commit
c38cf7d91a
86
webUI.py
86
webUI.py
|
@ -3,12 +3,18 @@ import os
|
||||||
|
|
||||||
# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
|
# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
import gradio.processing_utils as gr_pu
|
||||||
import librosa
|
import librosa
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import soundfile
|
import soundfile
|
||||||
from inference.infer_tool import Svc
|
from inference.infer_tool import Svc
|
||||||
import logging
|
import logging
|
||||||
import torch
|
|
||||||
|
import subprocess
|
||||||
|
import edge_tts
|
||||||
|
import asyncio
|
||||||
|
from scipy.io import wavfile
|
||||||
|
import librosa
|
||||||
|
|
||||||
logging.getLogger('numba').setLevel(logging.WARNING)
|
logging.getLogger('numba').setLevel(logging.WARNING)
|
||||||
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
||||||
|
@ -18,10 +24,6 @@ logging.getLogger('multipart').setLevel(logging.WARNING)
|
||||||
|
|
||||||
model = None
|
model = None
|
||||||
spk = None
|
spk = None
|
||||||
cuda = []
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
for i in range(torch.cuda.device_count()):
|
|
||||||
cuda.append("cuda:{}".format(i))
|
|
||||||
|
|
||||||
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num):
|
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num):
|
||||||
global model
|
global model
|
||||||
|
@ -36,13 +38,56 @@ def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise
|
||||||
if len(audio.shape) > 1:
|
if len(audio.shape) > 1:
|
||||||
audio = librosa.to_mono(audio.transpose(1, 0))
|
audio = librosa.to_mono(audio.transpose(1, 0))
|
||||||
temp_path = "temp.wav"
|
temp_path = "temp.wav"
|
||||||
soundfile.write(temp_path, audio, sampling_rate, format="wav")
|
soundfile.write(temp_path, audio, model.target_sample, format="wav")
|
||||||
_audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,pad_seconds,cl_num,lg_num,lgr_num)
|
_audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,pad_seconds,cl_num,lg_num,lgr_num)
|
||||||
model.clear_empty()
|
model.clear_empty()
|
||||||
os.remove(temp_path)
|
os.remove(temp_path)
|
||||||
return "Success", (model.target_sample, _audio)
|
return "Success", (model.target_sample, _audio)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return "异常信息:"+str(e)+"\n请排障后重试",None
|
return "异常信息:"+str(e)+"\n请排障后重试",None
|
||||||
|
|
||||||
|
def tts_func(_text,_rate):
|
||||||
|
#使用edge-tts把文字转成音频
|
||||||
|
# voice = "zh-CN-XiaoyiNeural"#女性,较高音
|
||||||
|
voice = "zh-CN-YunxiNeural"#男性
|
||||||
|
output_file = _text[0:10]+".wav"
|
||||||
|
# communicate = edge_tts.Communicate(_text, voice)
|
||||||
|
# await communicate.save(output_file)
|
||||||
|
if _rate>=0:
|
||||||
|
ratestr="+{:.0%}".format(_rate)
|
||||||
|
elif _rate<0:
|
||||||
|
ratestr="{:.0%}".format(_rate)#减号自带
|
||||||
|
|
||||||
|
p=subprocess.Popen(["edge-tts",
|
||||||
|
"--text",_text,
|
||||||
|
"--write-media",output_file,
|
||||||
|
"--voice",voice,
|
||||||
|
"--rate="+ratestr]
|
||||||
|
,shell=True,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
stdin=subprocess.PIPE)
|
||||||
|
p.wait()
|
||||||
|
return output_file
|
||||||
|
|
||||||
|
def vc_fn2(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate):
|
||||||
|
#使用edge-tts把文字转成音频
|
||||||
|
output_file=tts_func(text2tts,tts_rate)
|
||||||
|
|
||||||
|
#调整采样率
|
||||||
|
sr2=44100
|
||||||
|
wav, sr = librosa.load(output_file)
|
||||||
|
wav2 = librosa.resample(wav, orig_sr=sr, target_sr=sr2)
|
||||||
|
save_path2= text2tts[0:10]+"_44k"+".wav"
|
||||||
|
wavfile.write(save_path2,sr2,
|
||||||
|
(wav2 * np.iinfo(np.int16).max).astype(np.int16)
|
||||||
|
)
|
||||||
|
|
||||||
|
#读取音频
|
||||||
|
sample_rate, data=gr_pu.audio_from_file(save_path2)
|
||||||
|
vc_input=(sample_rate, data)
|
||||||
|
|
||||||
|
a,b=vc_fn(sid, vc_input, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num)
|
||||||
|
return a,b
|
||||||
|
|
||||||
app = gr.Blocks()
|
app = gr.Blocks()
|
||||||
with app:
|
with app:
|
||||||
|
@ -64,13 +109,17 @@ with app:
|
||||||
<font size=3>下面是聚类模型文件选择,没有可以不填:</font>
|
<font size=3>下面是聚类模型文件选择,没有可以不填:</font>
|
||||||
""")
|
""")
|
||||||
cluster_model_path = gr.File(label="聚类模型文件")
|
cluster_model_path = gr.File(label="聚类模型文件")
|
||||||
device = gr.Dropdown(label="推理设备,默认为自动选择cpu和gpu",choices=["Auto",*cuda,"cpu"],value="Auto")
|
device = gr.Dropdown(label="推理设备,留白则为自动选择cpu和gpu",choices=[None,"cuda","cpu"],value=None)
|
||||||
gr.Markdown(value="""
|
gr.Markdown(value="""
|
||||||
<font size=3>全部上传完毕后(全部文件模块显示download),点击模型解析进行解析:</font>
|
<font size=3>全部上传完毕后(全部文件模块显示download),点击模型解析进行解析:</font>
|
||||||
""")
|
""")
|
||||||
model_analysis_button = gr.Button(value="模型解析")
|
model_analysis_button = gr.Button(value="模型解析")
|
||||||
sid = gr.Dropdown(label="音色(说话人)")
|
sid = gr.Dropdown(label="音色(说话人)")
|
||||||
sid_output = gr.Textbox(label="Output Message")
|
sid_output = gr.Textbox(label="Output Message")
|
||||||
|
|
||||||
|
text2tts=gr.Textbox(label="在此输入要转译的文字")
|
||||||
|
tts_rate = gr.Number(label="tts语速", value=0)
|
||||||
|
|
||||||
vc_input3 = gr.Audio(label="上传音频")
|
vc_input3 = gr.Audio(label="上传音频")
|
||||||
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
||||||
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
||||||
|
@ -81,19 +130,26 @@ with app:
|
||||||
pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5)
|
pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5)
|
||||||
lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0)
|
lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0)
|
||||||
lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75,interactive=True)
|
lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75,interactive=True)
|
||||||
vc_submit = gr.Button("转换", variant="primary")
|
vc_submit = gr.Button("音频直接转换", variant="primary")
|
||||||
|
vc_submit2 = gr.Button("文字转音频+转换", variant="primary")
|
||||||
vc_output1 = gr.Textbox(label="Output Message")
|
vc_output1 = gr.Textbox(label="Output Message")
|
||||||
vc_output2 = gr.Audio(label="Output Audio")
|
vc_output2 = gr.Audio(label="Output Audio")
|
||||||
def modelAnalysis(model_path,config_path,cluster_model_path,device):
|
def modelAnalysis(model_path,config_path,cluster_model_path,device):
|
||||||
try:
|
global model
|
||||||
global model
|
debug=False
|
||||||
model = Svc(model_path.name, config_path.name,device=device if device!="Auto" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "")
|
if debug:
|
||||||
|
model = Svc(model_path.name, config_path.name,device=device if device!="" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "")
|
||||||
spks = list(model.spk2id.keys())
|
spks = list(model.spk2id.keys())
|
||||||
device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev)
|
return sid.update(choices = spks,value=spks[0]),"ok"
|
||||||
return sid.update(choices = spks,value=spks[0]),"ok,模型被加载到了设备{}之上".format(device_name)
|
else:
|
||||||
except Exception as e:
|
try:
|
||||||
return "","异常信息:"+str(e)+"\n请排障后重试"
|
model = Svc(model_path.name, config_path.name,device=device if device!="" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "")
|
||||||
|
spks = list(model.spk2id.keys())
|
||||||
|
return sid.update(choices = spks,value=spks[0]),"ok"
|
||||||
|
except Exception as e:
|
||||||
|
return "","异常信息:"+str(e)+"\n请排障后重试"
|
||||||
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num], [vc_output1, vc_output2])
|
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num], [vc_output1, vc_output2])
|
||||||
|
vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate], [vc_output1, vc_output2])
|
||||||
model_analysis_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device],[sid,sid_output])
|
model_analysis_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device],[sid,sid_output])
|
||||||
app.launch()
|
app.launch()
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue