From b2d41240c64ea57531373605b6fb3a60024e0367 Mon Sep 17 00:00:00 2001
From: luoye2333 <32596596+luoye2333@users.noreply.github.com>
Date: Wed, 29 Mar 2023 17:03:32 +0800
Subject: [PATCH] =?UTF-8?q?=E6=B7=BB=E5=8A=A0=E6=96=87=E5=AD=97=E8=BD=AC?=
=?UTF-8?q?=E8=AF=AD=E9=9F=B3=E5=8A=9F=E8=83=BD?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
webUI.py | 86 ++++++++++++++++++++++++++++++++++++++++++++++----------
1 file changed, 71 insertions(+), 15 deletions(-)
diff --git a/webUI.py b/webUI.py
index 47e99fe..785df22 100644
--- a/webUI.py
+++ b/webUI.py
@@ -3,12 +3,18 @@ import os
# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
import gradio as gr
+import gradio.processing_utils as gr_pu
import librosa
import numpy as np
import soundfile
from inference.infer_tool import Svc
import logging
-import torch
+
+import subprocess
+import edge_tts
+import asyncio
+from scipy.io import wavfile
+import librosa
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
@@ -18,10 +24,6 @@ logging.getLogger('multipart').setLevel(logging.WARNING)
model = None
spk = None
-cuda = []
-if torch.cuda.is_available():
- for i in range(torch.cuda.device_count()):
- cuda.append("cuda:{}".format(i))
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num):
global model
@@ -36,13 +38,56 @@ def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
temp_path = "temp.wav"
- soundfile.write(temp_path, audio, sampling_rate, format="wav")
+ soundfile.write(temp_path, audio, model.target_sample, format="wav")
_audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,pad_seconds,cl_num,lg_num,lgr_num)
model.clear_empty()
os.remove(temp_path)
return "Success", (model.target_sample, _audio)
except Exception as e:
return "异常信息:"+str(e)+"\n请排障后重试",None
+
+def tts_func(_text,_rate):
+ #使用edge-tts把文字转成音频
+ # voice = "zh-CN-XiaoyiNeural"#女性,较高音
+ voice = "zh-CN-YunxiNeural"#男性
+ output_file = _text[0:10]+".wav"
+ # communicate = edge_tts.Communicate(_text, voice)
+ # await communicate.save(output_file)
+ if _rate>=0:
+ ratestr="+{:.0%}".format(_rate)
+ elif _rate<0:
+ ratestr="{:.0%}".format(_rate)#减号自带
+
+ p=subprocess.Popen(["edge-tts",
+ "--text",_text,
+ "--write-media",output_file,
+ "--voice",voice,
+ "--rate="+ratestr]
+ ,shell=True,
+ stdout=subprocess.PIPE,
+ stdin=subprocess.PIPE)
+ p.wait()
+ return output_file
+
+def vc_fn2(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate):
+ #使用edge-tts把文字转成音频
+ output_file=tts_func(text2tts,tts_rate)
+
+ #调整采样率
+ sr2=44100
+ wav, sr = librosa.load(output_file)
+ wav2 = librosa.resample(wav, orig_sr=sr, target_sr=sr2)
+ save_path2= text2tts[0:10]+"_44k"+".wav"
+ wavfile.write(save_path2,sr2,
+ (wav2 * np.iinfo(np.int16).max).astype(np.int16)
+ )
+
+ #读取音频
+ sample_rate, data=gr_pu.audio_from_file(save_path2)
+ vc_input=(sample_rate, data)
+
+ a,b=vc_fn(sid, vc_input, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num)
+ return a,b
app = gr.Blocks()
with app:
@@ -64,13 +109,17 @@ with app:
下面是聚类模型文件选择,没有可以不填:
""")
cluster_model_path = gr.File(label="聚类模型文件")
- device = gr.Dropdown(label="推理设备,默认为自动选择cpu和gpu",choices=["Auto",*cuda,"cpu"],value="Auto")
+ device = gr.Dropdown(label="推理设备,留白则为自动选择cpu和gpu",choices=[None,"cuda","cpu"],value=None)
gr.Markdown(value="""
全部上传完毕后(全部文件模块显示download),点击模型解析进行解析:
""")
model_analysis_button = gr.Button(value="模型解析")
sid = gr.Dropdown(label="音色(说话人)")
sid_output = gr.Textbox(label="Output Message")
+
+ text2tts=gr.Textbox(label="在此输入要转译的文字")
+ tts_rate = gr.Number(label="tts语速", value=0)
+
vc_input3 = gr.Audio(label="上传音频")
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
@@ -81,19 +130,26 @@ with app:
pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5)
lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0)
lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75,interactive=True)
- vc_submit = gr.Button("转换", variant="primary")
+ vc_submit = gr.Button("音频直接转换", variant="primary")
+ vc_submit2 = gr.Button("文字转音频+转换", variant="primary")
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
def modelAnalysis(model_path,config_path,cluster_model_path,device):
- try:
- global model
- model = Svc(model_path.name, config_path.name,device=device if device!="Auto" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "")
+ global model
+ debug=False
+ if debug:
+ model = Svc(model_path.name, config_path.name,device=device if device!="" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "")
spks = list(model.spk2id.keys())
- device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev)
- return sid.update(choices = spks,value=spks[0]),"ok,模型被加载到了设备{}之上".format(device_name)
- except Exception as e:
- return "","异常信息:"+str(e)+"\n请排障后重试"
+ return sid.update(choices = spks,value=spks[0]),"ok"
+ else:
+ try:
+ model = Svc(model_path.name, config_path.name,device=device if device!="" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "")
+ spks = list(model.spk2id.keys())
+ return sid.update(choices = spks,value=spks[0]),"ok"
+ except Exception as e:
+ return "","异常信息:"+str(e)+"\n请排障后重试"
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num], [vc_output1, vc_output2])
+ vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate], [vc_output1, vc_output2])
model_analysis_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device],[sid,sid_output])
app.launch()