69 lines
1.8 KiB
Python
69 lines
1.8 KiB
Python
import glob
|
|
import os
|
|
import matplotlib
|
|
import torch
|
|
from torch.nn.utils import weight_norm
|
|
# matplotlib.use("Agg")
|
|
import matplotlib.pylab as plt
|
|
|
|
|
|
def plot_spectrogram(spectrogram):
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
|
interpolation='none')
|
|
plt.colorbar(im, ax=ax)
|
|
|
|
fig.canvas.draw()
|
|
plt.close()
|
|
|
|
return fig
|
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
m.weight.data.normal_(mean, std)
|
|
|
|
|
|
def apply_weight_norm(m):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
weight_norm(m)
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1):
|
|
return int((kernel_size*dilation - dilation)/2)
|
|
|
|
|
|
def load_checkpoint(filepath, device):
|
|
assert os.path.isfile(filepath)
|
|
print("Loading '{}'".format(filepath))
|
|
checkpoint_dict = torch.load(filepath, map_location=device)
|
|
print("Complete.")
|
|
return checkpoint_dict
|
|
|
|
|
|
def save_checkpoint(filepath, obj):
|
|
print("Saving checkpoint to {}".format(filepath))
|
|
torch.save(obj, filepath)
|
|
print("Complete.")
|
|
|
|
|
|
def del_old_checkpoints(cp_dir, prefix, n_models=2):
|
|
pattern = os.path.join(cp_dir, prefix + '????????')
|
|
cp_list = glob.glob(pattern) # get checkpoint paths
|
|
cp_list = sorted(cp_list)# sort by iter
|
|
if len(cp_list) > n_models: # if more than n_models models are found
|
|
for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models
|
|
open(cp, 'w').close()# empty file contents
|
|
os.unlink(cp)# delete file (move to trash when using Colab)
|
|
|
|
|
|
def scan_checkpoint(cp_dir, prefix):
|
|
pattern = os.path.join(cp_dir, prefix + '????????')
|
|
cp_list = glob.glob(pattern)
|
|
if len(cp_list) == 0:
|
|
return None
|
|
return sorted(cp_list)[-1]
|
|
|