107 lines
4.3 KiB
Python
107 lines
4.3 KiB
Python
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torchaudio.transforms import Resample
|
|
|
|
from vdecoder.nsf_hifigan.models import load_model
|
|
from vdecoder.nsf_hifigan.nvSTFT import STFT
|
|
|
|
|
|
class Enhancer:
|
|
def __init__(self, enhancer_type, enhancer_ckpt, device=None):
|
|
if device is None:
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
self.device = device
|
|
|
|
if enhancer_type == 'nsf-hifigan':
|
|
self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device)
|
|
else:
|
|
raise ValueError(f" [x] Unknown enhancer: {enhancer_type}")
|
|
|
|
self.resample_kernel = {}
|
|
self.enhancer_sample_rate = self.enhancer.sample_rate()
|
|
self.enhancer_hop_size = self.enhancer.hop_size()
|
|
|
|
def enhance(self,
|
|
audio, # 1, T
|
|
sample_rate,
|
|
f0, # 1, n_frames, 1
|
|
hop_size,
|
|
adaptive_key = 0,
|
|
silence_front = 0
|
|
):
|
|
# enhancer start time
|
|
start_frame = int(silence_front * sample_rate / hop_size)
|
|
real_silence_front = start_frame * hop_size / sample_rate
|
|
audio = audio[:, int(np.round(real_silence_front * sample_rate)) : ]
|
|
f0 = f0[: , start_frame :, :]
|
|
|
|
# adaptive parameters
|
|
adaptive_factor = 2 ** ( -adaptive_key / 12)
|
|
adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100))
|
|
real_factor = self.enhancer_sample_rate / adaptive_sample_rate
|
|
|
|
# resample the ddsp output
|
|
if sample_rate == adaptive_sample_rate:
|
|
audio_res = audio
|
|
else:
|
|
key_str = str(sample_rate) + str(adaptive_sample_rate)
|
|
if key_str not in self.resample_kernel:
|
|
self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width = 128).to(self.device)
|
|
audio_res = self.resample_kernel[key_str](audio)
|
|
|
|
n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1)
|
|
|
|
# resample f0
|
|
f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy()
|
|
f0_np *= real_factor
|
|
time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor
|
|
time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames)
|
|
f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1])
|
|
f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames
|
|
|
|
# enhance
|
|
enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res)
|
|
|
|
# resample the enhanced output
|
|
if adaptive_factor != 0:
|
|
key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate)
|
|
if key_str not in self.resample_kernel:
|
|
self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width = 128).to(self.device)
|
|
enhanced_audio = self.resample_kernel[key_str](enhanced_audio)
|
|
|
|
# pad the silence frames
|
|
if start_frame > 0:
|
|
enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0))
|
|
|
|
return enhanced_audio, enhancer_sample_rate
|
|
|
|
|
|
class NsfHifiGAN(torch.nn.Module):
|
|
def __init__(self, model_path, device=None):
|
|
super().__init__()
|
|
if device is None:
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
self.device = device
|
|
print('| Load HifiGAN: ', model_path)
|
|
self.model, self.h = load_model(model_path, device=self.device)
|
|
|
|
def sample_rate(self):
|
|
return self.h.sampling_rate
|
|
|
|
def hop_size(self):
|
|
return self.h.hop_size
|
|
|
|
def forward(self, audio, f0):
|
|
stft = STFT(
|
|
self.h.sampling_rate,
|
|
self.h.num_mels,
|
|
self.h.n_fft,
|
|
self.h.win_size,
|
|
self.h.hop_size,
|
|
self.h.fmin,
|
|
self.h.fmax)
|
|
with torch.no_grad():
|
|
mel = stft.get_mel(audio)
|
|
enhanced_audio = self.model(mel, f0[:,:mel.size(-1)]).view(-1)
|
|
return enhanced_audio, self.h.sampling_rate |