77 lines
2.5 KiB
Python
77 lines
2.5 KiB
Python
import argparse
|
|
|
|
import torch
|
|
from torch.optim import lr_scheduler
|
|
|
|
from diffusion.data_loaders import get_data_loaders
|
|
from diffusion.logger import utils
|
|
from diffusion.solver import train
|
|
from diffusion.unit2mel import Unit2Mel
|
|
from diffusion.vocoder import Vocoder
|
|
|
|
|
|
def parse_args(args=None, namespace=None):
|
|
"""Parse command-line arguments."""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"-c",
|
|
"--config",
|
|
type=str,
|
|
required=True,
|
|
help="path to the config file")
|
|
return parser.parse_args(args=args, namespace=namespace)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# parse commands
|
|
cmd = parse_args()
|
|
|
|
# load config
|
|
args = utils.load_config(cmd.config)
|
|
print(' > config:', cmd.config)
|
|
print(' > exp:', args.env.expdir)
|
|
|
|
# load vocoder
|
|
vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=args.device)
|
|
|
|
# load model
|
|
model = Unit2Mel(
|
|
args.data.encoder_out_channels,
|
|
args.model.n_spk,
|
|
args.model.use_pitch_aug,
|
|
vocoder.dimension,
|
|
args.model.n_layers,
|
|
args.model.n_chans,
|
|
args.model.n_hidden,
|
|
args.model.timesteps,
|
|
args.model.k_step_max
|
|
)
|
|
|
|
print(f' > INFO: now model timesteps is {model.timesteps}, and k_step_max is {model.k_step_max}')
|
|
|
|
# load parameters
|
|
optimizer = torch.optim.AdamW(model.parameters())
|
|
initial_global_step, model, optimizer = utils.load_model(args.env.expdir, model, optimizer, device=args.device)
|
|
for param_group in optimizer.param_groups:
|
|
param_group['initial_lr'] = args.train.lr
|
|
param_group['lr'] = args.train.lr * (args.train.gamma ** max(((initial_global_step-2)//args.train.decay_step),0) )
|
|
param_group['weight_decay'] = args.train.weight_decay
|
|
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.train.decay_step, gamma=args.train.gamma,last_epoch=initial_global_step-2)
|
|
|
|
# device
|
|
if args.device == 'cuda':
|
|
torch.cuda.set_device(args.env.gpu_id)
|
|
model.to(args.device)
|
|
|
|
for state in optimizer.state.values():
|
|
for k, v in state.items():
|
|
if torch.is_tensor(v):
|
|
state[k] = v.to(args.device)
|
|
|
|
# datas
|
|
loader_train, loader_valid = get_data_loaders(args, whole_audio=False)
|
|
|
|
# run
|
|
train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_valid)
|
|
|