so-vits-svc/modules/DSConv.py

76 lines
2.9 KiB
Python

import torch.nn as nn
from torch.nn.utils import remove_weight_norm, weight_norm
class Depthwise_Separable_Conv1D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride = 1,
padding = 0,
dilation = 1,
bias = True,
padding_mode = 'zeros', # TODO: refine this type
device=None,
dtype=None
):
super().__init__()
self.depth_conv = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels,stride = stride,padding=padding,dilation=dilation,bias=bias,padding_mode=padding_mode,device=device,dtype=dtype)
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, device=device,dtype=dtype)
def forward(self, input):
return self.point_conv(self.depth_conv(input))
def weight_norm(self):
self.depth_conv = weight_norm(self.depth_conv, name = 'weight')
self.point_conv = weight_norm(self.point_conv, name = 'weight')
def remove_weight_norm(self):
self.depth_conv = remove_weight_norm(self.depth_conv, name = 'weight')
self.point_conv = remove_weight_norm(self.point_conv, name = 'weight')
class Depthwise_Separable_TransposeConv1D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride = 1,
padding = 0,
output_padding = 0,
bias = True,
dilation = 1,
padding_mode = 'zeros', # TODO: refine this type
device=None,
dtype=None
):
super().__init__()
self.depth_conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels,stride = stride,output_padding=output_padding,padding=padding,dilation=dilation,bias=bias,padding_mode=padding_mode,device=device,dtype=dtype)
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, device=device,dtype=dtype)
def forward(self, input):
return self.point_conv(self.depth_conv(input))
def weight_norm(self):
self.depth_conv = weight_norm(self.depth_conv, name = 'weight')
self.point_conv = weight_norm(self.point_conv, name = 'weight')
def remove_weight_norm(self):
remove_weight_norm(self.depth_conv, name = 'weight')
remove_weight_norm(self.point_conv, name = 'weight')
def weight_norm_modules(module, name = 'weight', dim = 0):
if isinstance(module,Depthwise_Separable_Conv1D) or isinstance(module,Depthwise_Separable_TransposeConv1D):
module.weight_norm()
return module
else:
return weight_norm(module,name,dim)
def remove_weight_norm_modules(module, name = 'weight'):
if isinstance(module,Depthwise_Separable_Conv1D) or isinstance(module,Depthwise_Separable_TransposeConv1D):
module.remove_weight_norm()
else:
remove_weight_norm(module,name)