so-vits-svc/diffusion/onnx_export.py

236 lines
8.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import yaml
from diffusion_onnx import GaussianDiffusion
class DotDict(dict):
def __getattr__(*args):
val = dict.get(*args)
return DotDict(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def load_model_vocoder(
model_path,
device='cpu'):
config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
with open(config_file, "r") as config:
args = yaml.safe_load(config)
args = DotDict(args)
# load model
model = Unit2Mel(
args.data.encoder_out_channels,
args.model.n_spk,
args.model.use_pitch_aug,
128,
args.model.n_layers,
args.model.n_chans,
args.model.n_hidden,
args.model.timesteps,
args.model.k_step_max)
print(' [Loading] ' + model_path)
ckpt = torch.load(model_path, map_location=torch.device(device))
model.to(device)
model.load_state_dict(ckpt['model'])
model.eval()
return model, args
class Unit2Mel(nn.Module):
def __init__(
self,
input_channel,
n_spk,
use_pitch_aug=False,
out_dims=128,
n_layers=20,
n_chans=384,
n_hidden=256,
timesteps=1000,
k_step_max=1000):
super().__init__()
self.unit_embed = nn.Linear(input_channel, n_hidden)
self.f0_embed = nn.Linear(1, n_hidden)
self.volume_embed = nn.Linear(1, n_hidden)
if use_pitch_aug:
self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
else:
self.aug_shift_embed = None
self.n_spk = n_spk
if n_spk is not None and n_spk > 1:
self.spk_embed = nn.Embedding(n_spk, n_hidden)
self.timesteps = timesteps if timesteps is not None else 1000
self.k_step_max = k_step_max if k_step_max is not None and k_step_max>0 and k_step_max<self.timesteps else self.timesteps
# diffusion
self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden,self.timesteps,self.k_step_max)
self.hidden_size = n_hidden
self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden))
def forward(self, units, mel2ph, f0, volume, g = None):
'''
input:
B x n_frames x n_unit
return:
dict of B x n_frames x feat
'''
decoder_inp = F.pad(units, [0, 0, 1, 0])
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
g = g * self.speaker_map # [N, S, B, 1, H]
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
x = x.transpose(1, 2) + g
return x
else:
return x.transpose(1, 2)
def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
'''
input:
B x n_frames x n_unit
return:
dict of B x n_frames x feat
'''
x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
if self.n_spk is not None and self.n_spk > 1:
if spk_mix_dict is not None:
spk_embed_mix = torch.zeros((1,1,self.hidden_size))
for k, v in spk_mix_dict.items():
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
spk_embeddd = self.spk_embed(spk_id_torch)
self.speaker_map[k] = spk_embeddd
spk_embed_mix = spk_embed_mix + v * spk_embeddd
x = x + spk_embed_mix
else:
x = x + self.spk_embed(spk_id - 1)
self.speaker_map = self.speaker_map.unsqueeze(0)
self.speaker_map = self.speaker_map.detach()
return x.transpose(1, 2)
def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
hubert_hidden_size = 768
n_frames = 100
hubert = torch.randn((1, n_frames, hubert_hidden_size))
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
f0 = torch.randn((1, n_frames))
volume = torch.randn((1, n_frames))
spk_mix = []
spks = {}
if self.n_spk is not None and self.n_spk > 1:
for i in range(self.n_spk):
spk_mix.append(1.0/float(self.n_spk))
spks.update({i:1.0/float(self.n_spk)})
spk_mix = torch.tensor(spk_mix)
spk_mix = spk_mix.repeat(n_frames, 1)
self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
self.forward(hubert, mel2ph, f0, volume, spk_mix)
if export_encoder:
torch.onnx.export(
self,
(hubert, mel2ph, f0, volume, spk_mix),
f"{project_name}_encoder.onnx",
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
output_names=["mel_pred"],
dynamic_axes={
"hubert": [1],
"f0": [1],
"volume": [1],
"mel2ph": [1],
"spk_mix": [0],
},
opset_version=16
)
self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)
def ExportOnnx(self, project_name=None):
hubert_hidden_size = 768
n_frames = 100
hubert = torch.randn((1, n_frames, hubert_hidden_size))
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
f0 = torch.randn((1, n_frames))
volume = torch.randn((1, n_frames))
spk_mix = []
spks = {}
if self.n_spk is not None and self.n_spk > 1:
for i in range(self.n_spk):
spk_mix.append(1.0/float(self.n_spk))
spks.update({i:1.0/float(self.n_spk)})
spk_mix = torch.tensor(spk_mix)
self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
self.forward(hubert, mel2ph, f0, volume, spk_mix)
torch.onnx.export(
self,
(hubert, mel2ph, f0, volume, spk_mix),
f"{project_name}_encoder.onnx",
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
output_names=["mel_pred"],
dynamic_axes={
"hubert": [1],
"f0": [1],
"volume": [1],
"mel2ph": [1]
},
opset_version=16
)
condition = torch.randn(1,self.decoder.n_hidden,n_frames)
noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
pndm_speedup = torch.LongTensor([100])
K_steps = torch.LongTensor([1000])
self.decoder = torch.jit.script(self.decoder)
self.decoder(condition, noise, pndm_speedup, K_steps)
torch.onnx.export(
self.decoder,
(condition, noise, pndm_speedup, K_steps),
f"{project_name}_diffusion.onnx",
input_names=["condition", "noise", "pndm_speedup", "K_steps"],
output_names=["mel"],
dynamic_axes={
"condition": [2],
"noise": [3],
},
opset_version=16
)
if __name__ == "__main__":
project_name = "dddsp"
model_path = f'{project_name}/model_500000.pt'
model, _ = load_model_vocoder(model_path)
# 分开Diffusion导出需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样
model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)
# 合并Diffusion导出Encoder和Diffusion分开直接将Encoder的结果和初始噪声输入Diffusion即可
# model.ExportOnnx(project_name)