445 lines
15 KiB
Python
445 lines
15 KiB
Python
import os
|
|
import glob
|
|
import re
|
|
import sys
|
|
import argparse
|
|
import logging
|
|
import json
|
|
import subprocess
|
|
import warnings
|
|
import random
|
|
import functools
|
|
import librosa
|
|
import numpy as np
|
|
from scipy.io.wavfile import read
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from modules.commons import sequence_mask
|
|
|
|
MATPLOTLIB_FLAG = False
|
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.WARN)
|
|
logger = logging
|
|
|
|
f0_bin = 256
|
|
f0_max = 1100.0
|
|
f0_min = 50.0
|
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
|
|
|
def normalize_f0(f0, x_mask, uv, random_scale=True):
|
|
# calculate means based on x_mask
|
|
uv_sum = torch.sum(uv, dim=1, keepdim=True)
|
|
uv_sum[uv_sum == 0] = 9999
|
|
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
|
|
|
|
if random_scale:
|
|
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
|
|
else:
|
|
factor = torch.ones(f0.shape[0], 1).to(f0.device)
|
|
# normalize f0 based on means and factor
|
|
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
|
if torch.isnan(f0_norm).any():
|
|
exit(0)
|
|
return f0_norm * x_mask
|
|
|
|
def plot_data_to_numpy(x, y):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger('matplotlib')
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
plt.plot(x)
|
|
plt.plot(y)
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def f0_to_coarse(f0):
|
|
is_torch = isinstance(f0, torch.Tensor)
|
|
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
|
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
|
|
|
|
f0_mel[f0_mel <= 1] = 1
|
|
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
|
|
f0_coarse = (f0_mel + 0.5).int() if is_torch else np.rint(f0_mel).astype(np.int)
|
|
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
|
|
return f0_coarse
|
|
|
|
def get_content(cmodel, y):
|
|
with torch.no_grad():
|
|
c = cmodel.extract_features(y.squeeze(1))[0]
|
|
c = c.transpose(1, 2)
|
|
return c
|
|
|
|
def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs):
|
|
if f0_predictor == "pm":
|
|
from modules.F0Predictor.PMF0Predictor import PMF0Predictor
|
|
f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
|
elif f0_predictor == "crepe":
|
|
from modules.F0Predictor.CrepeF0Predictor import CrepeF0Predictor
|
|
f0_predictor_object = CrepeF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,device=kargs["device"],threshold=kargs["threshold"])
|
|
elif f0_predictor == "harvest":
|
|
from modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
|
|
f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
|
elif f0_predictor == "dio":
|
|
from modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
|
f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
|
else:
|
|
raise Exception("Unknown f0 predictor")
|
|
return f0_predictor_object
|
|
|
|
def get_speech_encoder(speech_encoder,device=None,**kargs):
|
|
if speech_encoder == "vec768l12":
|
|
from vencoder.ContentVec768L12 import ContentVec768L12
|
|
speech_encoder_object = ContentVec768L12(device = device)
|
|
elif speech_encoder == "vec256l9":
|
|
from vencoder.ContentVec256L9 import ContentVec256L9
|
|
speech_encoder_object = ContentVec256L9(device = device)
|
|
elif speech_encoder == "vec256l9-onnx":
|
|
from vencoder.ContentVec256L9_Onnx import ContentVec256L9_Onnx
|
|
speech_encoder_object = ContentVec256L9_Onnx(device = device)
|
|
elif speech_encoder == "vec256l12-onnx":
|
|
from vencoder.ContentVec256L12_Onnx import ContentVec256L12_Onnx
|
|
speech_encoder_object = ContentVec256L12_Onnx(device = device)
|
|
elif speech_encoder == "vec768l9-onnx":
|
|
from vencoder.ContentVec768L9_Onnx import ContentVec768L9_Onnx
|
|
speech_encoder_object = ContentVec768L9_Onnx(device = device)
|
|
elif speech_encoder == "vec768l12-onnx":
|
|
from vencoder.ContentVec768L12_Onnx import ContentVec768L12_Onnx
|
|
speech_encoder_object = ContentVec768L12_Onnx(device = device)
|
|
elif speech_encoder == "hubertsoft-onnx":
|
|
from vencoder.HubertSoft_Onnx import HubertSoft_Onnx
|
|
speech_encoder_object = HubertSoft_Onnx(device = device)
|
|
elif speech_encoder == "hubertsoft":
|
|
from vencoder.HubertSoft import HubertSoft
|
|
speech_encoder_object = HubertSoft(device = device)
|
|
elif speech_encoder == "whisper-ppg":
|
|
from vencoder.WhisperPPG import WhisperPPG
|
|
speech_encoder_object = WhisperPPG(device = device)
|
|
else:
|
|
raise Exception("Unknown speech encoder")
|
|
return speech_encoder_object
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
|
assert os.path.isfile(checkpoint_path)
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
|
iteration = checkpoint_dict['iteration']
|
|
learning_rate = checkpoint_dict['learning_rate']
|
|
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
|
|
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
|
saved_state_dict = checkpoint_dict['model']
|
|
if hasattr(model, 'module'):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
new_state_dict = {}
|
|
for k, v in state_dict.items():
|
|
try:
|
|
# assert "dec" in k or "disc" in k
|
|
# print("load", k)
|
|
new_state_dict[k] = saved_state_dict[k]
|
|
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
|
|
except:
|
|
print("error, %s is not in the checkpoint" % k)
|
|
logger.info("%s is not in the checkpoint" % k)
|
|
new_state_dict[k] = v
|
|
if hasattr(model, 'module'):
|
|
model.module.load_state_dict(new_state_dict)
|
|
else:
|
|
model.load_state_dict(new_state_dict)
|
|
print("load ")
|
|
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
|
checkpoint_path, iteration))
|
|
return model, optimizer, learning_rate, iteration
|
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
|
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
|
iteration, checkpoint_path))
|
|
if hasattr(model, 'module'):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
torch.save({'model': state_dict,
|
|
'iteration': iteration,
|
|
'optimizer': optimizer.state_dict(),
|
|
'learning_rate': learning_rate}, checkpoint_path)
|
|
|
|
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
|
|
"""Freeing up space by deleting saved ckpts
|
|
|
|
Arguments:
|
|
path_to_models -- Path to the model directory
|
|
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
|
sort_by_time -- True -> chronologically delete ckpts
|
|
False -> lexicographically delete ckpts
|
|
"""
|
|
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
|
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
|
|
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
|
|
sort_key = time_key if sort_by_time else name_key
|
|
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
|
|
to_del = [os.path.join(path_to_models, fn) for fn in
|
|
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
|
|
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
|
|
del_routine = lambda x: [os.remove(x), del_info(x)]
|
|
rs = [del_routine(fn) for fn in to_del]
|
|
|
|
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
|
for k, v in scalars.items():
|
|
writer.add_scalar(k, v, global_step)
|
|
for k, v in histograms.items():
|
|
writer.add_histogram(k, v, global_step)
|
|
for k, v in images.items():
|
|
writer.add_image(k, v, global_step, dataformats='HWC')
|
|
for k, v in audios.items():
|
|
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
|
x = f_list[-1]
|
|
print(x)
|
|
return x
|
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger('matplotlib')
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(10,2))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
|
interpolation='none')
|
|
plt.colorbar(im, ax=ax)
|
|
plt.xlabel("Frames")
|
|
plt.ylabel("Channels")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger('matplotlib')
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
|
interpolation='none')
|
|
fig.colorbar(im, ax=ax)
|
|
xlabel = 'Decoder timestep'
|
|
if info is not None:
|
|
xlabel += '\n\n' + info
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel('Encoder timestep')
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
sampling_rate, data = read(full_path)
|
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"):
|
|
with open(filename, encoding='utf-8') as f:
|
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
return filepaths_and_text
|
|
|
|
|
|
def get_hparams(init=True):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-c', '--config', type=str, default="./configs/config.json",
|
|
help='JSON file for configuration')
|
|
parser.add_argument('-m', '--model', type=str, required=True,
|
|
help='Model name')
|
|
|
|
args = parser.parse_args()
|
|
model_dir = os.path.join("./logs", args.model)
|
|
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir)
|
|
|
|
config_path = args.config
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
if init:
|
|
with open(config_path, "r") as f:
|
|
data = f.read()
|
|
with open(config_save_path, "w") as f:
|
|
f.write(data)
|
|
else:
|
|
with open(config_save_path, "r") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
return hparams
|
|
|
|
|
|
def get_hparams_from_dir(model_dir):
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
with open(config_save_path, "r") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams =HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
return hparams
|
|
|
|
|
|
def get_hparams_from_file(config_path):
|
|
with open(config_path, "r") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
hparams =HParams(**config)
|
|
return hparams
|
|
|
|
|
|
def check_git_hash(model_dir):
|
|
source_dir = os.path.dirname(os.path.realpath(__file__))
|
|
if not os.path.exists(os.path.join(source_dir, ".git")):
|
|
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
|
source_dir
|
|
))
|
|
return
|
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
|
|
|
path = os.path.join(model_dir, "githash")
|
|
if os.path.exists(path):
|
|
saved_hash = open(path).read()
|
|
if saved_hash != cur_hash:
|
|
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
|
saved_hash[:8], cur_hash[:8]))
|
|
else:
|
|
open(path, "w").write(cur_hash)
|
|
|
|
|
|
def get_logger(model_dir, filename="train.log"):
|
|
global logger
|
|
logger = logging.getLogger(os.path.basename(model_dir))
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir)
|
|
h = logging.FileHandler(os.path.join(model_dir, filename))
|
|
h.setLevel(logging.DEBUG)
|
|
h.setFormatter(formatter)
|
|
logger.addHandler(h)
|
|
return logger
|
|
|
|
|
|
def repeat_expand_2d(content, target_len):
|
|
# content : [h, t]
|
|
|
|
src_len = content.shape[-1]
|
|
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
|
|
temp = torch.arange(src_len+1) * target_len / src_len
|
|
current_pos = 0
|
|
for i in range(target_len):
|
|
if i < temp[current_pos+1]:
|
|
target[:, i] = content[:, current_pos]
|
|
else:
|
|
current_pos += 1
|
|
target[:, i] = content[:, current_pos]
|
|
|
|
return target
|
|
|
|
|
|
def mix_model(model_paths,mix_rate,mode):
|
|
mix_rate = torch.FloatTensor(mix_rate)/100
|
|
model_tem = torch.load(model_paths[0])
|
|
models = [torch.load(path)["model"] for path in model_paths]
|
|
if mode == 0:
|
|
mix_rate = F.softmax(mix_rate,dim=0)
|
|
for k in model_tem["model"].keys():
|
|
model_tem["model"][k] = torch.zeros_like(model_tem["model"][k])
|
|
for i,model in enumerate(models):
|
|
model_tem["model"][k] += model[k]*mix_rate[i]
|
|
torch.save(model_tem,os.path.join(os.path.curdir,"output.pth"))
|
|
return os.path.join(os.path.curdir,"output.pth")
|
|
|
|
class HParams():
|
|
def __init__(self, **kwargs):
|
|
for k, v in kwargs.items():
|
|
if type(v) == dict:
|
|
v = HParams(**v)
|
|
self[k] = v
|
|
|
|
def keys(self):
|
|
return self.__dict__.keys()
|
|
|
|
def items(self):
|
|
return self.__dict__.items()
|
|
|
|
def values(self):
|
|
return self.__dict__.values()
|
|
|
|
def __len__(self):
|
|
return len(self.__dict__)
|
|
|
|
def __getitem__(self, key):
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
return setattr(self, key, value)
|
|
|
|
def __contains__(self, key):
|
|
return key in self.__dict__
|
|
|
|
def __repr__(self):
|
|
return self.__dict__.__repr__()
|
|
|
|
def get(self,index):
|
|
return self.__dict__.get(index)
|
|
|
|
class Volume_Extractor:
|
|
def __init__(self, hop_size = 512):
|
|
self.hop_size = hop_size
|
|
|
|
def extract(self, audio): # audio: 2d tensor array
|
|
if not isinstance(audio,torch.Tensor):
|
|
audio = torch.Tensor(audio)
|
|
n_frames = int(audio.size(-1) // self.hop_size)
|
|
audio2 = audio ** 2
|
|
audio2 = torch.nn.functional.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode = 'reflect')
|
|
volume = torch.FloatTensor([torch.mean(audio2[:,int(n * self.hop_size) : int((n + 1) * self.hop_size)]) for n in range(n_frames)])
|
|
volume = torch.sqrt(volume)
|
|
return volume |