so-vits-svc/onnxexport/model_onnx.py

334 lines
12 KiB
Python

import torch
from torch import nn
from torch.nn import Conv1d, Conv2d
from torch.nn import functional as F
from torch.nn.utils import spectral_norm, weight_norm
import modules.attentions as attentions
import modules.commons as commons
import modules.modules as modules
import utils
from modules.commons import get_padding
from utils import f0_to_coarse
from vdecoder.hifigan.models import Generator
class ResidualCouplingBlock(nn.Module):
def __init__(self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
n_flows=4,
gin_channels=0):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
for i in range(n_flows):
self.flows.append(
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
gin_channels=gin_channels, mean_only=True))
self.flows.append(modules.Flip())
def forward(self, x, x_mask, g=None, reverse=False):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class Encoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
# print(x.shape,x_lengths.shape)
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class TextEncoder(nn.Module):
def __init__(self,
out_channels,
hidden_channels,
kernel_size,
n_layers,
gin_channels=0,
filter_channels=None,
n_heads=None,
p_dropout=None):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.gin_channels = gin_channels
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
self.f0_emb = nn.Embedding(256, hidden_channels)
self.enc_ = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
def forward(self, x, x_mask, f0=None, z=None):
x = x + self.f0_emb(f0).transpose(1, 2)
x = self.enc_(x * x_mask, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + z * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class F0Decoder(nn.Module):
def __init__(self,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
spk_channels=0):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.spk_channels = spk_channels
self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
self.decoder = attentions.FFT(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.f0_prenet = nn.Conv1d(1, hidden_channels, 3, padding=1)
self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
def forward(self, x, norm_f0, x_mask, spk_emb=None):
x = torch.detach(x)
if spk_emb is not None:
x = x + self.cond(spk_emb)
x += self.f0_prenet(norm_f0)
x = self.prenet(x) * x_mask
x = self.decoder(x * x_mask, x_mask)
x = self.proj(x) * x_mask
return x
class SynthesizerTrn(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels,
ssl_dim,
n_speakers,
sampling_rate=44100,
**kwargs):
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
self.ssl_dim = ssl_dim
self.emb_g = nn.Embedding(n_speakers, gin_channels)
self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
self.enc_p = TextEncoder(
inter_channels,
hidden_channels,
filter_channels=filter_channels,
n_heads=n_heads,
n_layers=n_layers,
kernel_size=kernel_size,
p_dropout=p_dropout
)
hps = {
"sampling_rate": sampling_rate,
"inter_channels": inter_channels,
"resblock": resblock,
"resblock_kernel_sizes": resblock_kernel_sizes,
"resblock_dilation_sizes": resblock_dilation_sizes,
"upsample_rates": upsample_rates,
"upsample_initial_channel": upsample_initial_channel,
"upsample_kernel_sizes": upsample_kernel_sizes,
"gin_channels": gin_channels,
}
self.dec = Generator(h=hps)
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
self.f0_decoder = F0Decoder(
1,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
spk_channels=gin_channels
)
self.emb_uv = nn.Embedding(2, hidden_channels)
self.predict_f0 = False
def forward(self, c, f0, mel2ph, uv, noise=None, g=None):
decoder_inp = F.pad(c, [0, 0, 1, 0])
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, c.shape[-1]])
c = torch.gather(decoder_inp, 1, mel2ph_).transpose(1, 2) # [B, T, H]
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
g = g.unsqueeze(0)
g = self.emb_g(g).transpose(1, 2)
x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2)
if self.predict_f0:
lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), z=noise)
z = self.flow(z_p, c_mask, g=g, reverse=True)
o = self.dec(z * c_mask, g=g, f0=f0)
return o