156 lines
5.4 KiB
Python
156 lines
5.4 KiB
Python
import time
|
|
import os
|
|
import random
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.data
|
|
|
|
import modules.commons as commons
|
|
import utils
|
|
from modules.mel_processing import spectrogram_torch, spec_to_mel_torch
|
|
from utils import load_wav_to_torch, load_filepaths_and_text
|
|
|
|
# import h5py
|
|
|
|
|
|
"""Multi speaker version"""
|
|
|
|
|
|
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio, speaker_id, text pairs
|
|
2) normalizes text and converts them to sequences of integers
|
|
3) computes spectrograms from audio files.
|
|
"""
|
|
|
|
def __init__(self, audiopaths, hparams, all_in_mem: bool = False):
|
|
self.audiopaths = load_filepaths_and_text(audiopaths)
|
|
self.max_wav_value = hparams.data.max_wav_value
|
|
self.sampling_rate = hparams.data.sampling_rate
|
|
self.filter_length = hparams.data.filter_length
|
|
self.hop_length = hparams.data.hop_length
|
|
self.win_length = hparams.data.win_length
|
|
self.sampling_rate = hparams.data.sampling_rate
|
|
self.use_sr = hparams.train.use_sr
|
|
self.spec_len = hparams.train.max_speclen
|
|
self.spk_map = hparams.spk
|
|
|
|
random.seed(1234)
|
|
random.shuffle(self.audiopaths)
|
|
|
|
self.all_in_mem = all_in_mem
|
|
if self.all_in_mem:
|
|
self.cache = [self.get_audio(p[0]) for p in self.audiopaths]
|
|
|
|
def get_audio(self, filename):
|
|
filename = filename.replace("\\", "/")
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
if sampling_rate != self.sampling_rate:
|
|
raise ValueError("{} SR doesn't match target {} SR".format(
|
|
sampling_rate, self.sampling_rate))
|
|
audio_norm = audio / self.max_wav_value
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
|
|
# Ideally, all data generated after Mar 25 should have .spec.pt
|
|
if os.path.exists(spec_filename):
|
|
spec = torch.load(spec_filename)
|
|
else:
|
|
spec = spectrogram_torch(audio_norm, self.filter_length,
|
|
self.sampling_rate, self.hop_length, self.win_length,
|
|
center=False)
|
|
spec = torch.squeeze(spec, 0)
|
|
torch.save(spec, spec_filename)
|
|
|
|
spk = filename.split("/")[-2]
|
|
spk = torch.LongTensor([self.spk_map[spk]])
|
|
|
|
f0, uv = np.load(filename + ".f0.npy",allow_pickle=True)
|
|
|
|
f0 = torch.FloatTensor(np.array(f0,dtype=float))
|
|
uv = torch.FloatTensor(np.array(uv,dtype=float))
|
|
|
|
c = torch.load(filename+ ".soft.pt")
|
|
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
|
|
|
|
|
|
lmin = min(c.size(-1), spec.size(-1))
|
|
assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename)
|
|
assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
|
|
spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
|
|
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
|
|
|
return c, f0, spec, audio_norm, spk, uv
|
|
|
|
def random_slice(self, c, f0, spec, audio_norm, spk, uv):
|
|
# if spec.shape[1] < 30:
|
|
# print("skip too short audio:", filename)
|
|
# return None
|
|
if spec.shape[1] > 800:
|
|
start = random.randint(0, spec.shape[1]-800)
|
|
end = start + 790
|
|
spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
|
|
audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
|
|
|
|
return c, f0, spec, audio_norm, spk, uv
|
|
|
|
def __getitem__(self, index):
|
|
if self.all_in_mem:
|
|
return self.random_slice(*self.cache[index])
|
|
else:
|
|
return self.random_slice(*self.get_audio(self.audiopaths[index][0]))
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths)
|
|
|
|
|
|
class TextAudioCollate:
|
|
|
|
def __call__(self, batch):
|
|
batch = [b for b in batch if b is not None]
|
|
|
|
input_lengths, ids_sorted_decreasing = torch.sort(
|
|
torch.LongTensor([x[0].shape[1] for x in batch]),
|
|
dim=0, descending=True)
|
|
|
|
max_c_len = max([x[0].size(1) for x in batch])
|
|
max_wav_len = max([x[3].size(1) for x in batch])
|
|
|
|
lengths = torch.LongTensor(len(batch))
|
|
|
|
c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
|
|
f0_padded = torch.FloatTensor(len(batch), max_c_len)
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
|
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
|
spkids = torch.LongTensor(len(batch), 1)
|
|
uv_padded = torch.FloatTensor(len(batch), max_c_len)
|
|
|
|
c_padded.zero_()
|
|
spec_padded.zero_()
|
|
f0_padded.zero_()
|
|
wav_padded.zero_()
|
|
uv_padded.zero_()
|
|
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
row = batch[ids_sorted_decreasing[i]]
|
|
|
|
c = row[0]
|
|
c_padded[i, :, :c.size(1)] = c
|
|
lengths[i] = c.size(1)
|
|
|
|
f0 = row[1]
|
|
f0_padded[i, :f0.size(0)] = f0
|
|
|
|
spec = row[2]
|
|
spec_padded[i, :, :spec.size(1)] = spec
|
|
|
|
wav = row[3]
|
|
wav_padded[i, :, :wav.size(1)] = wav
|
|
|
|
spkids[i, 0] = row[4]
|
|
|
|
uv = row[5]
|
|
uv_padded[i, :uv.size(0)] = uv
|
|
|
|
return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded
|