31 lines
1.3 KiB
Python
31 lines
1.3 KiB
Python
from modules.F0Predictor.F0Predictor import F0Predictor
|
|
from modules.F0Predictor.crepe import CrepePitchExtractor
|
|
import torch
|
|
|
|
class CrepeF0Predictor(F0Predictor):
|
|
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,device=None,sampling_rate=44100,threshold=0.05,model="full"):
|
|
self.F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device,threshold=threshold,model=model)
|
|
self.hop_length = hop_length
|
|
self.f0_min = f0_min
|
|
self.f0_max = f0_max
|
|
self.device = device
|
|
self.threshold = threshold
|
|
self.sampling_rate = sampling_rate
|
|
|
|
def compute_f0(self,wav,p_len=None):
|
|
x = torch.FloatTensor(wav).to(self.device)
|
|
if p_len is None:
|
|
p_len = x.shape[0]//self.hop_length
|
|
else:
|
|
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
|
f0,uv = self.F0Creper(x[None,:].float(),self.sampling_rate,pad_to=p_len)
|
|
return f0
|
|
|
|
def compute_f0_uv(self,wav,p_len=None):
|
|
x = torch.FloatTensor(wav).to(self.device)
|
|
if p_len is None:
|
|
p_len = x.shape[0]//self.hop_length
|
|
else:
|
|
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
|
f0,uv = self.F0Creper(x[None,:].float(),self.sampling_rate,pad_to=p_len)
|
|
return f0,uv |