55 lines
2.1 KiB
Python
55 lines
2.1 KiB
Python
import torch
|
|
from onnxexport.model_onnx import SynthesizerTrn
|
|
import utils
|
|
|
|
def main(NetExport):
|
|
path = "SoVits4.0"
|
|
if NetExport:
|
|
device = torch.device("cpu")
|
|
hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
|
SVCVITS = SynthesizerTrn(
|
|
hps.data.filter_length // 2 + 1,
|
|
hps.train.segment_size // hps.data.hop_length,
|
|
**hps.model)
|
|
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
|
|
_ = SVCVITS.eval().to(device)
|
|
for i in SVCVITS.parameters():
|
|
i.requires_grad = False
|
|
|
|
n_frame = 10
|
|
test_hidden_unit = torch.rand(1, n_frame, 256)
|
|
test_pitch = torch.rand(1, n_frame)
|
|
test_mel2ph = torch.arange(0, n_frame, dtype=torch.int64)[None] # torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).unsqueeze(0)
|
|
test_uv = torch.ones(1, n_frame, dtype=torch.float32)
|
|
test_noise = torch.randn(1, 192, n_frame)
|
|
test_sid = torch.LongTensor([0])
|
|
input_names = ["c", "f0", "mel2ph", "uv", "noise", "sid"]
|
|
output_names = ["audio", ]
|
|
|
|
torch.onnx.export(SVCVITS,
|
|
(
|
|
test_hidden_unit.to(device),
|
|
test_pitch.to(device),
|
|
test_mel2ph.to(device),
|
|
test_uv.to(device),
|
|
test_noise.to(device),
|
|
test_sid.to(device)
|
|
),
|
|
f"checkpoints/{path}/model.onnx",
|
|
dynamic_axes={
|
|
"c": [0, 1],
|
|
"f0": [1],
|
|
"mel2ph": [1],
|
|
"uv": [1],
|
|
"noise": [2],
|
|
},
|
|
do_constant_folding=False,
|
|
opset_version=16,
|
|
verbose=False,
|
|
input_names=input_names,
|
|
output_names=output_names)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main(True)
|