350 lines
13 KiB
Python
350 lines
13 KiB
Python
import copy
|
|
import math
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
import modules.commons as commons
|
|
import modules.modules as modules
|
|
from modules.modules import LayerNorm
|
|
|
|
|
|
class FFT(nn.Module):
|
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
|
|
proximal_bias=False, proximal_init=True, **kwargs):
|
|
super().__init__()
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.proximal_bias = proximal_bias
|
|
self.proximal_init = proximal_init
|
|
|
|
self.drop = nn.Dropout(p_dropout)
|
|
self.self_attn_layers = nn.ModuleList()
|
|
self.norm_layers_0 = nn.ModuleList()
|
|
self.ffn_layers = nn.ModuleList()
|
|
self.norm_layers_1 = nn.ModuleList()
|
|
for i in range(self.n_layers):
|
|
self.self_attn_layers.append(
|
|
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
|
|
proximal_init=proximal_init))
|
|
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
|
self.ffn_layers.append(
|
|
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
|
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
|
|
|
def forward(self, x, x_mask):
|
|
"""
|
|
x: decoder input
|
|
h: encoder output
|
|
"""
|
|
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
|
x = x * x_mask
|
|
for i in range(self.n_layers):
|
|
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
|
y = self.drop(y)
|
|
x = self.norm_layers_0[i](x + y)
|
|
|
|
y = self.ffn_layers[i](x, x_mask)
|
|
y = self.drop(y)
|
|
x = self.norm_layers_1[i](x + y)
|
|
x = x * x_mask
|
|
return x
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
|
super().__init__()
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.window_size = window_size
|
|
|
|
self.drop = nn.Dropout(p_dropout)
|
|
self.attn_layers = nn.ModuleList()
|
|
self.norm_layers_1 = nn.ModuleList()
|
|
self.ffn_layers = nn.ModuleList()
|
|
self.norm_layers_2 = nn.ModuleList()
|
|
for i in range(self.n_layers):
|
|
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
|
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
|
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
|
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
|
|
|
def forward(self, x, x_mask):
|
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
|
x = x * x_mask
|
|
for i in range(self.n_layers):
|
|
y = self.attn_layers[i](x, x, attn_mask)
|
|
y = self.drop(y)
|
|
x = self.norm_layers_1[i](x + y)
|
|
|
|
y = self.ffn_layers[i](x, x_mask)
|
|
y = self.drop(y)
|
|
x = self.norm_layers_2[i](x + y)
|
|
x = x * x_mask
|
|
return x
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
|
super().__init__()
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.proximal_bias = proximal_bias
|
|
self.proximal_init = proximal_init
|
|
|
|
self.drop = nn.Dropout(p_dropout)
|
|
self.self_attn_layers = nn.ModuleList()
|
|
self.norm_layers_0 = nn.ModuleList()
|
|
self.encdec_attn_layers = nn.ModuleList()
|
|
self.norm_layers_1 = nn.ModuleList()
|
|
self.ffn_layers = nn.ModuleList()
|
|
self.norm_layers_2 = nn.ModuleList()
|
|
for i in range(self.n_layers):
|
|
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
|
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
|
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
|
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
|
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
|
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
|
|
|
def forward(self, x, x_mask, h, h_mask):
|
|
"""
|
|
x: decoder input
|
|
h: encoder output
|
|
"""
|
|
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
|
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
|
x = x * x_mask
|
|
for i in range(self.n_layers):
|
|
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
|
y = self.drop(y)
|
|
x = self.norm_layers_0[i](x + y)
|
|
|
|
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
|
y = self.drop(y)
|
|
x = self.norm_layers_1[i](x + y)
|
|
|
|
y = self.ffn_layers[i](x, x_mask)
|
|
y = self.drop(y)
|
|
x = self.norm_layers_2[i](x + y)
|
|
x = x * x_mask
|
|
return x
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
|
super().__init__()
|
|
assert channels % n_heads == 0
|
|
|
|
self.channels = channels
|
|
self.out_channels = out_channels
|
|
self.n_heads = n_heads
|
|
self.p_dropout = p_dropout
|
|
self.window_size = window_size
|
|
self.heads_share = heads_share
|
|
self.block_length = block_length
|
|
self.proximal_bias = proximal_bias
|
|
self.proximal_init = proximal_init
|
|
self.attn = None
|
|
|
|
self.k_channels = channels // n_heads
|
|
self.conv_q = nn.Conv1d(channels, channels, 1)
|
|
self.conv_k = nn.Conv1d(channels, channels, 1)
|
|
self.conv_v = nn.Conv1d(channels, channels, 1)
|
|
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
|
self.drop = nn.Dropout(p_dropout)
|
|
|
|
if window_size is not None:
|
|
n_heads_rel = 1 if heads_share else n_heads
|
|
rel_stddev = self.k_channels**-0.5
|
|
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
|
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
|
|
|
nn.init.xavier_uniform_(self.conv_q.weight)
|
|
nn.init.xavier_uniform_(self.conv_k.weight)
|
|
nn.init.xavier_uniform_(self.conv_v.weight)
|
|
if proximal_init:
|
|
with torch.no_grad():
|
|
self.conv_k.weight.copy_(self.conv_q.weight)
|
|
self.conv_k.bias.copy_(self.conv_q.bias)
|
|
|
|
def forward(self, x, c, attn_mask=None):
|
|
q = self.conv_q(x)
|
|
k = self.conv_k(c)
|
|
v = self.conv_v(c)
|
|
|
|
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
|
|
|
x = self.conv_o(x)
|
|
return x
|
|
|
|
def attention(self, query, key, value, mask=None):
|
|
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
|
b, d, t_s, t_t = (*key.size(), query.size(2))
|
|
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
|
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
|
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
|
|
|
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
|
if self.window_size is not None:
|
|
assert t_s == t_t, "Relative attention is only available for self-attention."
|
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
|
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
|
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
|
scores = scores + scores_local
|
|
if self.proximal_bias:
|
|
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
|
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
|
if mask is not None:
|
|
scores = scores.masked_fill(mask == 0, -1e4)
|
|
if self.block_length is not None:
|
|
assert t_s == t_t, "Local attention is only available for self-attention."
|
|
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
|
scores = scores.masked_fill(block_mask == 0, -1e4)
|
|
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
|
p_attn = self.drop(p_attn)
|
|
output = torch.matmul(p_attn, value)
|
|
if self.window_size is not None:
|
|
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
|
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
|
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
|
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
|
return output, p_attn
|
|
|
|
def _matmul_with_relative_values(self, x, y):
|
|
"""
|
|
x: [b, h, l, m]
|
|
y: [h or 1, m, d]
|
|
ret: [b, h, l, d]
|
|
"""
|
|
ret = torch.matmul(x, y.unsqueeze(0))
|
|
return ret
|
|
|
|
def _matmul_with_relative_keys(self, x, y):
|
|
"""
|
|
x: [b, h, l, d]
|
|
y: [h or 1, m, d]
|
|
ret: [b, h, l, m]
|
|
"""
|
|
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
|
return ret
|
|
|
|
def _get_relative_embeddings(self, relative_embeddings, length):
|
|
max_relative_position = 2 * self.window_size + 1
|
|
# Pad first before slice to avoid using cond ops.
|
|
pad_length = max(length - (self.window_size + 1), 0)
|
|
slice_start_position = max((self.window_size + 1) - length, 0)
|
|
slice_end_position = slice_start_position + 2 * length - 1
|
|
if pad_length > 0:
|
|
padded_relative_embeddings = F.pad(
|
|
relative_embeddings,
|
|
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
|
else:
|
|
padded_relative_embeddings = relative_embeddings
|
|
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
|
return used_relative_embeddings
|
|
|
|
def _relative_position_to_absolute_position(self, x):
|
|
"""
|
|
x: [b, h, l, 2*l-1]
|
|
ret: [b, h, l, l]
|
|
"""
|
|
batch, heads, length, _ = x.size()
|
|
# Concat columns of pad to shift from relative to absolute indexing.
|
|
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
|
|
|
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
|
x_flat = x.view([batch, heads, length * 2 * length])
|
|
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
|
|
|
# Reshape and slice out the padded elements.
|
|
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
|
return x_final
|
|
|
|
def _absolute_position_to_relative_position(self, x):
|
|
"""
|
|
x: [b, h, l, l]
|
|
ret: [b, h, l, 2*l-1]
|
|
"""
|
|
batch, heads, length, _ = x.size()
|
|
# padd along column
|
|
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
|
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
|
# add 0's in the beginning that will skew the elements after reshape
|
|
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
|
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
|
return x_final
|
|
|
|
def _attention_bias_proximal(self, length):
|
|
"""Bias for self-attention to encourage attention to close positions.
|
|
Args:
|
|
length: an integer scalar.
|
|
Returns:
|
|
a Tensor with shape [1, 1, length, length]
|
|
"""
|
|
r = torch.arange(length, dtype=torch.float32)
|
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
|
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
|
|
|
|
|
class FFN(nn.Module):
|
|
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.filter_channels = filter_channels
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.activation = activation
|
|
self.causal = causal
|
|
|
|
if causal:
|
|
self.padding = self._causal_padding
|
|
else:
|
|
self.padding = self._same_padding
|
|
|
|
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
|
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
|
self.drop = nn.Dropout(p_dropout)
|
|
|
|
def forward(self, x, x_mask):
|
|
x = self.conv_1(self.padding(x * x_mask))
|
|
if self.activation == "gelu":
|
|
x = x * torch.sigmoid(1.702 * x)
|
|
else:
|
|
x = torch.relu(x)
|
|
x = self.drop(x)
|
|
x = self.conv_2(self.padding(x * x_mask))
|
|
return x * x_mask
|
|
|
|
def _causal_padding(self, x):
|
|
if self.kernel_size == 1:
|
|
return x
|
|
pad_l = self.kernel_size - 1
|
|
pad_r = 0
|
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
|
x = F.pad(x, commons.convert_pad_shape(padding))
|
|
return x
|
|
|
|
def _same_padding(self, x):
|
|
if self.kernel_size == 1:
|
|
return x
|
|
pad_l = (self.kernel_size - 1) // 2
|
|
pad_r = self.kernel_size // 2
|
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
|
x = F.pad(x, commons.convert_pad_shape(padding))
|
|
return x
|