96 lines
5.3 KiB
Python
96 lines
5.3 KiB
Python
import io
|
||
import os
|
||
|
||
# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
|
||
import gradio as gr
|
||
import librosa
|
||
import numpy as np
|
||
import soundfile
|
||
from inference.infer_tool import Svc
|
||
import logging
|
||
|
||
logging.getLogger('numba').setLevel(logging.WARNING)
|
||
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
||
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||
logging.getLogger('multipart').setLevel(logging.WARNING)
|
||
|
||
model = None
|
||
spk = None
|
||
|
||
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num):
|
||
global model
|
||
try:
|
||
if input_audio is None:
|
||
return "You need to upload an audio", None
|
||
if model is None:
|
||
return "You need to upload an model", None
|
||
sampling_rate, audio = input_audio
|
||
# print(audio.shape,sampling_rate)
|
||
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
||
if len(audio.shape) > 1:
|
||
audio = librosa.to_mono(audio.transpose(1, 0))
|
||
temp_path = "temp.wav"
|
||
soundfile.write(temp_path, audio, model.target_sample, format="wav")
|
||
_audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,pad_seconds,cl_num,lg_num,lgr_num)
|
||
model.clear_empty()
|
||
os.remove(temp_path)
|
||
return "Success", (model.target_sample, _audio)
|
||
except Exception as e:
|
||
return "异常信息:"+str(e)+"\n请排障后重试",None
|
||
|
||
app = gr.Blocks()
|
||
with app:
|
||
with gr.Tabs():
|
||
with gr.TabItem("Sovits4.0"):
|
||
gr.Markdown(value="""
|
||
Sovits4.0 WebUI
|
||
""")
|
||
|
||
gr.Markdown(value="""
|
||
<font size=3>下面是模型文件选择:</font>
|
||
""")
|
||
model_path = gr.File(label="模型文件")
|
||
gr.Markdown(value="""
|
||
<font size=3>下面是配置文件选择:</font>
|
||
""")
|
||
config_path = gr.File(label="配置文件")
|
||
gr.Markdown(value="""
|
||
<font size=3>下面是聚类模型文件选择,没有可以不填:</font>
|
||
""")
|
||
cluster_model_path = gr.File(label="聚类模型文件")
|
||
device = gr.Dropdown(label="推理设备,留白则为自动选择cpu和gpu",choices=[None,"gpu","cpu"],value=None)
|
||
gr.Markdown(value="""
|
||
<font size=3>全部上传完毕后(全部文件模块显示download),点击模型解析进行解析:</font>
|
||
""")
|
||
model_analysis_button = gr.Button(value="模型解析")
|
||
sid = gr.Dropdown(label="音色(说话人)")
|
||
sid_output = gr.Textbox(label="Output Message")
|
||
vc_input3 = gr.Audio(label="上传音频")
|
||
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
||
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
||
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
|
||
slice_db = gr.Number(label="切片阈值", value=-40)
|
||
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
|
||
cl_num = gr.Number(label="音频自动切片,0为不切片,单位为秒/s", value=0)
|
||
pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5)
|
||
lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0)
|
||
lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75,interactive=True)
|
||
vc_submit = gr.Button("转换", variant="primary")
|
||
vc_output1 = gr.Textbox(label="Output Message")
|
||
vc_output2 = gr.Audio(label="Output Audio")
|
||
def modelAnalysis(model_path,config_path,cluster_model_path,device):
|
||
try:
|
||
global model
|
||
model = Svc(model_path.name, config_path.name,device=device if device!="" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "")
|
||
spks = list(model.spk2id.keys())
|
||
return sid.update(choices = spks,value=spks[0]),"ok"
|
||
except Exception as e:
|
||
return "","异常信息:"+str(e)+"\n请排障后重试"
|
||
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num], [vc_output1, vc_output2])
|
||
model_analysis_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device],[sid,sid_output])
|
||
app.launch()
|
||
|
||
|
||
|