so-vits-svc/app.py

70 lines
3.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import io
import os
# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
import gradio as gr
import librosa
import numpy as np
import soundfile
from inference.infer_tool import Svc
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
config_path = "configs/config.json"
model = Svc("logs/44k/G_114400.pth", "configs/config.json", cluster_model_path="logs/44k/kmeans_10000.pt")
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
# print(audio.shape,sampling_rate)
duration = audio.shape[0] / sampling_rate
if duration > 90:
return "请上传小于90s的音频需要转换长音频请本地进行转换", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
print(audio.shape)
out_wav_path = "temp.wav"
soundfile.write(out_wav_path, audio, 16000, format="wav")
print( cluster_ratio, auto_f0, noise_scale)
_audio = model.slice_inference(out_wav_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale)
return "Success", (44100, _audio)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
gr.Markdown(value="""
sovits4.0 在线demo
此demo为预训练底模在线demo使用数据云灏 即霜 辉宇·星AI 派蒙 绫地宁宁
""")
spks = list(model.spk2id.keys())
sid = gr.Dropdown(label="音色", choices=spks, value=spks[0])
vc_input3 = gr.Audio(label="上传音频长度小于90秒")
vc_transform = gr.Number(label="变调整数可以正负半音数量升高八度就是12", value=0)
cluster_ratio = gr.Number(label="聚类模型混合比例0-1之间默认为0不启用聚类能提升音色相似度但会导致咬字下降如果使用建议0.5左右)", value=0)
auto_f0 = gr.Checkbox(label="自动f0预测配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
slice_db = gr.Number(label="切片阈值", value=-40)
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
vc_submit = gr.Button("转换", variant="primary")
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [vc_output1, vc_output2])
app.launch()