36 lines
1.3 KiB
Python
36 lines
1.3 KiB
Python
from vencoder.encoder import SpeechEncoder
|
|
import torch
|
|
from fairseq import checkpoint_utils
|
|
|
|
class ContentVec256L9(SpeechEncoder):
|
|
def __init__(self,vec_path = "pretrain/checkpoint_best_legacy_500.pt",device=None):
|
|
print("load model(s) from {}".format(vec_path))
|
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
|
[vec_path],
|
|
suffix="",
|
|
)
|
|
self.hidden_dim = 256
|
|
if device is None:
|
|
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
else:
|
|
self.dev = torch.device(device)
|
|
self.model = models[0].to(self.dev)
|
|
self.model.eval()
|
|
|
|
def encoder(self, wav):
|
|
feats = wav
|
|
if feats.dim() == 2: # double channels
|
|
feats = feats.mean(-1)
|
|
assert feats.dim() == 1, feats.dim()
|
|
feats = feats.view(1, -1)
|
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
|
inputs = {
|
|
"source": feats.to(wav.device),
|
|
"padding_mask": padding_mask.to(wav.device),
|
|
"output_layer": 9, # layer 9
|
|
}
|
|
with torch.no_grad():
|
|
logits = self.model.extract_features(**inputs)
|
|
feats = self.model.final_proj(logits[0])
|
|
return feats.transpose(1, 2)
|