Update webUI.py
1. Standardize the output file names to the format in `inference_main.py` 2. Avoid assigning the cluster_ratio before uploading the cluster model or feature retrieval model
This commit is contained in:
parent
de81cf9e76
commit
c0125ac139
43
webUI.py
43
webUI.py
|
@ -15,6 +15,7 @@ import numpy as np
|
|||
import soundfile
|
||||
import torch
|
||||
from scipy.io import wavfile
|
||||
from pathlib import Path
|
||||
|
||||
from compress_model import removeOptimizer
|
||||
from inference.infer_tool import Svc
|
||||
|
@ -81,7 +82,6 @@ def modelAnalysis(model_path,config_path,cluster_model_path,device,enhance,diff_
|
|||
device = cuda[device] if "CUDA" in device else device
|
||||
cluster_filepath = os.path.split(cluster_model_path.name) if cluster_model_path is not None else "no_cluster"
|
||||
fr = ".pkl" in cluster_filepath[1]
|
||||
#model = Svc(model_path.name, config_path.name, device=device if device!="Auto" else None, cluster_model_path = cluster_model_path.name if cluster_model_path != None else "",nsf_hifigan_enhance=enhance)
|
||||
model = Svc(model_path.name,
|
||||
config_path.name,
|
||||
device=device if device != "Auto" else None,
|
||||
|
@ -127,24 +127,30 @@ def modelUnload():
|
|||
torch.cuda.empty_cache()
|
||||
return sid.update(choices = [],value=""),"模型卸载完毕!"
|
||||
|
||||
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment):
|
||||
def vc_fn(sid, input_audio, output_format, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment):
|
||||
global model
|
||||
try:
|
||||
if input_audio is None:
|
||||
return "You need to upload an audio", None
|
||||
if model is None:
|
||||
return "You need to upload an model", None
|
||||
print(input_audio)
|
||||
sampling_rate, audio = input_audio
|
||||
print(audio.shape,sampling_rate)
|
||||
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
||||
print(audio.dtype)
|
||||
if getattr(model, 'cluster_model', None) is None and model.feature_retrieval is False:
|
||||
if cluster_ratio != 0:
|
||||
return "You need to upload an cluster model or feature retrieval model before assigning cluster ratio!", None
|
||||
#print(input_audio)
|
||||
audio, sampling_rate = soundfile.read(input_audio)
|
||||
#print(audio.shape,sampling_rate)
|
||||
if np.issubdtype(audio.dtype, np.integer):
|
||||
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
||||
#print(audio.dtype)
|
||||
if len(audio.shape) > 1:
|
||||
audio = librosa.to_mono(audio.transpose(1, 0))
|
||||
temp_path = "temp.wav"
|
||||
soundfile.write(temp_path, audio, sampling_rate, format="wav")
|
||||
# 未知原因Gradio上传的filepath会有一个奇怪的固定后缀,这里去掉
|
||||
truncated_basename = Path(input_audio).stem[:-6]
|
||||
processed_audio = os.path.join("raw", f"{truncated_basename}.wav")
|
||||
soundfile.write(processed_audio, audio, sampling_rate, format="wav")
|
||||
_audio = model.slice_inference(
|
||||
temp_path,
|
||||
processed_audio,
|
||||
sid,
|
||||
vc_transform,
|
||||
slice_db,
|
||||
|
@ -164,13 +170,19 @@ def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise
|
|||
loudness_envelope_adjustment
|
||||
)
|
||||
model.clear_empty()
|
||||
os.remove(temp_path)
|
||||
#os.remove(temp_path)
|
||||
#构建保存文件的路径,并保存到results文件夹内
|
||||
timestamp = str(int(time.time()))
|
||||
if not os.path.exists("results"):
|
||||
os.makedirs("results")
|
||||
output_file = os.path.join("results", sid + "_" + timestamp + ".wav")
|
||||
soundfile.write(output_file, _audio, model.target_sample, format="wav")
|
||||
key = "auto" if auto_f0 else f"{int(vc_transform)}key"
|
||||
cluster = "_" if cluster_ratio == 0 else f"_{cluster_ratio}_"
|
||||
isdiffusion = "sovits"
|
||||
if model.shallow_diffusion : isdiffusion = "sovdiff"
|
||||
if model.only_diffusion : isdiffusion = "diff"
|
||||
output_file_name = 'result_'+truncated_basename+f'_{sid}_{key}{cluster}{isdiffusion}.{output_format}'
|
||||
output_file = os.path.join("results", output_file_name)
|
||||
soundfile.write(output_file, _audio, model.target_sample, format=output_format)
|
||||
return "Success", output_file
|
||||
except Exception as e:
|
||||
if debug:
|
||||
|
@ -291,6 +303,7 @@ with gr.Blocks(
|
|||
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
||||
cluster_ratio = gr.Number(label="聚类模型/特征检索混合比例,0-1之间,0即不启用聚类/特征检索。使用聚类/特征检索能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
||||
slice_db = gr.Number(label="切片阈值", value=-40)
|
||||
output_format = gr.Radio(label="音频输出格式", choices=["wav", "flac", "mp3"], value = "wav")
|
||||
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
|
||||
k_step = gr.Slider(label="浅扩散步数,只有使用了扩散模型才有效,步数越大越接近扩散模型的结果", value=100, minimum = 1, maximum = 1000)
|
||||
with gr.Column():
|
||||
|
@ -305,7 +318,7 @@ with gr.Blocks(
|
|||
use_spk_mix = gr.Checkbox(label = "动态声线融合", value = False, interactive = False)
|
||||
with gr.Tabs():
|
||||
with gr.TabItem("音频转音频"):
|
||||
vc_input3 = gr.Audio(label="选择音频")
|
||||
vc_input3 = gr.Audio(label="选择音频", type="filepath")
|
||||
vc_submit = gr.Button("音频转换", variant="primary")
|
||||
with gr.TabItem("文字转音频"):
|
||||
text2tts=gr.Textbox(label="在此输入要转译的文字。注意,使用该功能建议打开F0预测,不然会很怪")
|
||||
|
@ -371,7 +384,7 @@ with gr.Blocks(
|
|||
<font size=2> WebUI设置</font>
|
||||
""")
|
||||
debug_button = gr.Checkbox(label="Debug模式,如果向社区反馈BUG需要打开,打开后控制台可以显示具体错误提示", value=debug)
|
||||
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment], [vc_output1, vc_output2])
|
||||
vc_submit.click(vc_fn, [sid, vc_input3, output_format, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment], [vc_output1, vc_output2])
|
||||
vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,tts_voice,f0_predictor,enhancer_adaptive_key,cr_threshold], [vc_output1, vc_output2])
|
||||
debug_button.change(debug_change,[],[])
|
||||
model_load_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device,enhance,diff_model_path,diff_config_path,only_diffusion,use_spk_mix],[sid,sid_output])
|
||||
|
|
Loading…
Reference in New Issue