Update README.md

This commit is contained in:
Miuzarte 2023-04-09 11:41:03 +08:00
parent 7fd193a1f8
commit b228fff583
2 changed files with 9 additions and 9 deletions

View File

@ -104,29 +104,29 @@ dataset_raw
## 🛠️ Preprocessing
0. Slice audio
### 0. Slice audio
Slice to `5s - 15s`, a bit longer is no problem. Too long may lead to `torch.cuda.OutOfMemoryError` during training or even pre-processing.
By using [audio-slicer-GUI](https://github.com/flutydeer/audio-slicer) or [audio-slicer-CLI](https://github.com/openvpi/audio-slicer)
In general, only the `Minimum Interval` needs to be adjusted. For statement audio it usually remains default. For singing materials it can be adjusted to `100` or even `50`.
In general, only the `Minimum Interval` needs to be adjusted. For statement audio it usually remains default. For singing audio it can be adjusted to `100` or even `50`.
After slicing, delete audio that is too long and too short.
1. Resample to 44100Hz and mono
### 1. Resample to 44100Hz and mono
```shell
python resample.py
```
2. Automatically split the dataset into training and validation sets, and generate configuration files.
### 2. Automatically split the dataset into training and validation sets, and generate configuration files.
```shell
python preprocess_flist_config.py
```
3. Generate hubert and f0
### 3. Generate hubert and f0
```shell
python preprocess_hubert_f0.py

View File

@ -104,7 +104,7 @@ dataset_raw
## 🛠️ 数据预处理
0. 音频切片
### 0. 音频切片
将音频切片至`5s - 15s`, 稍微长点也无伤大雅,实在太长可能会导致训练中途甚至预处理就爆显存。
@ -114,19 +114,19 @@ dataset_raw
切完之后手动删除过长过短的音频
1. 重采样至44100Hz单声道
### 1. 重采样至44100Hz单声道
```shell
python resample.py
```
2. 自动划分训练集、验证集,以及自动生成配置文件
### 2. 自动划分训练集、验证集,以及自动生成配置文件
```shell
python preprocess_flist_config.py
```
3. 生成hubert与f0
### 3. 生成hubert与f0
```shell
python preprocess_hubert_f0.py