70 lines
3.1 KiB
Python
70 lines
3.1 KiB
Python
|
import io
|
|||
|
import os
|
|||
|
|
|||
|
# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
|
|||
|
import gradio as gr
|
|||
|
import librosa
|
|||
|
import numpy as np
|
|||
|
import soundfile
|
|||
|
from inference.infer_tool import Svc
|
|||
|
import logging
|
|||
|
|
|||
|
logging.getLogger('numba').setLevel(logging.WARNING)
|
|||
|
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
|||
|
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
|||
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|||
|
|
|||
|
config_path = "configs/config.json"
|
|||
|
|
|||
|
model = Svc("logs/44k/G_114400.pth", "configs/config.json", cluster_model_path="logs/44k/kmeans_10000.pt")
|
|||
|
|
|||
|
|
|||
|
|
|||
|
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale):
|
|||
|
if input_audio is None:
|
|||
|
return "You need to upload an audio", None
|
|||
|
sampling_rate, audio = input_audio
|
|||
|
# print(audio.shape,sampling_rate)
|
|||
|
duration = audio.shape[0] / sampling_rate
|
|||
|
if duration > 90:
|
|||
|
return "请上传小于90s的音频,需要转换长音频请本地进行转换", None
|
|||
|
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
|||
|
if len(audio.shape) > 1:
|
|||
|
audio = librosa.to_mono(audio.transpose(1, 0))
|
|||
|
if sampling_rate != 16000:
|
|||
|
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
|||
|
print(audio.shape)
|
|||
|
out_wav_path = "temp.wav"
|
|||
|
soundfile.write(out_wav_path, audio, 16000, format="wav")
|
|||
|
print( cluster_ratio, auto_f0, noise_scale)
|
|||
|
_audio = model.slice_inference(out_wav_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale)
|
|||
|
return "Success", (44100, _audio)
|
|||
|
|
|||
|
|
|||
|
app = gr.Blocks()
|
|||
|
with app:
|
|||
|
with gr.Tabs():
|
|||
|
with gr.TabItem("Basic"):
|
|||
|
gr.Markdown(value="""
|
|||
|
sovits4.0 在线demo
|
|||
|
|
|||
|
此demo为预训练底模在线demo,使用数据:云灏 即霜 辉宇·星AI 派蒙 绫地宁宁
|
|||
|
""")
|
|||
|
spks = list(model.spk2id.keys())
|
|||
|
sid = gr.Dropdown(label="音色", choices=spks, value=spks[0])
|
|||
|
vc_input3 = gr.Audio(label="上传音频(长度小于90秒)")
|
|||
|
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
|||
|
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
|||
|
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
|
|||
|
slice_db = gr.Number(label="切片阈值", value=-40)
|
|||
|
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
|
|||
|
vc_submit = gr.Button("转换", variant="primary")
|
|||
|
vc_output1 = gr.Textbox(label="Output Message")
|
|||
|
vc_output2 = gr.Audio(label="Output Audio")
|
|||
|
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [vc_output1, vc_output2])
|
|||
|
|
|||
|
app.launch()
|
|||
|
|
|||
|
|
|||
|
|