2023-06-26 06:57:53 +00:00
|
|
|
import math
|
2023-05-18 07:46:55 +00:00
|
|
|
from collections import deque
|
|
|
|
from functools import partial
|
|
|
|
from inspect import isfunction
|
2023-06-26 06:57:53 +00:00
|
|
|
|
2023-05-18 07:46:55 +00:00
|
|
|
import numpy as np
|
|
|
|
import torch
|
2023-06-26 06:57:53 +00:00
|
|
|
import torch.nn.functional as F
|
2023-05-18 07:46:55 +00:00
|
|
|
from torch import nn
|
2023-06-26 06:57:53 +00:00
|
|
|
from torch.nn import Conv1d, Mish
|
2023-05-18 07:46:55 +00:00
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
def exists(x):
|
|
|
|
return x is not None
|
|
|
|
|
|
|
|
|
|
|
|
def default(val, d):
|
|
|
|
if exists(val):
|
|
|
|
return val
|
|
|
|
return d() if isfunction(d) else d
|
|
|
|
|
|
|
|
|
|
|
|
def extract(a, t):
|
|
|
|
return a[t].reshape((1, 1, 1, 1))
|
|
|
|
|
|
|
|
|
|
|
|
def noise_like(shape, device, repeat=False):
|
2023-06-25 15:46:26 +00:00
|
|
|
def repeat_noise():
|
|
|
|
return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
|
|
|
def noise():
|
|
|
|
return torch.randn(shape, device=device)
|
2023-05-18 07:46:55 +00:00
|
|
|
return repeat_noise() if repeat else noise()
|
|
|
|
|
|
|
|
|
|
|
|
def linear_beta_schedule(timesteps, max_beta=0.02):
|
|
|
|
"""
|
|
|
|
linear schedule
|
|
|
|
"""
|
|
|
|
betas = np.linspace(1e-4, max_beta, timesteps)
|
|
|
|
return betas
|
|
|
|
|
|
|
|
|
|
|
|
def cosine_beta_schedule(timesteps, s=0.008):
|
|
|
|
"""
|
|
|
|
cosine schedule
|
|
|
|
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
|
|
|
"""
|
|
|
|
steps = timesteps + 1
|
|
|
|
x = np.linspace(0, steps, steps)
|
|
|
|
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
|
|
|
|
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
|
|
|
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
|
|
|
return np.clip(betas, a_min=0, a_max=0.999)
|
|
|
|
|
|
|
|
|
|
|
|
beta_schedule = {
|
|
|
|
"cosine": cosine_beta_schedule,
|
|
|
|
"linear": linear_beta_schedule,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def extract_1(a, t):
|
|
|
|
return a[t].reshape((1, 1, 1, 1))
|
|
|
|
|
|
|
|
|
|
|
|
def predict_stage0(noise_pred, noise_pred_prev):
|
|
|
|
return (noise_pred + noise_pred_prev) / 2
|
|
|
|
|
|
|
|
|
|
|
|
def predict_stage1(noise_pred, noise_list):
|
|
|
|
return (noise_pred * 3
|
|
|
|
- noise_list[-1]) / 2
|
|
|
|
|
|
|
|
|
|
|
|
def predict_stage2(noise_pred, noise_list):
|
|
|
|
return (noise_pred * 23
|
|
|
|
- noise_list[-1] * 16
|
|
|
|
+ noise_list[-2] * 5) / 12
|
|
|
|
|
|
|
|
|
|
|
|
def predict_stage3(noise_pred, noise_list):
|
|
|
|
return (noise_pred * 55
|
|
|
|
- noise_list[-1] * 59
|
|
|
|
+ noise_list[-2] * 37
|
|
|
|
- noise_list[-3] * 9) / 24
|
|
|
|
|
|
|
|
|
|
|
|
class SinusoidalPosEmb(nn.Module):
|
|
|
|
def __init__(self, dim):
|
|
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
|
|
self.half_dim = dim // 2
|
|
|
|
self.emb = 9.21034037 / (self.half_dim - 1)
|
|
|
|
self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
|
|
|
|
self.emb = self.emb.cpu()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
emb = self.emb * x
|
|
|
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
|
|
|
return emb
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
|
|
def __init__(self, encoder_hidden, residual_channels, dilation):
|
|
|
|
super().__init__()
|
|
|
|
self.residual_channels = residual_channels
|
|
|
|
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
|
|
|
|
self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
|
|
|
|
self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
|
|
|
|
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
|
|
|
|
|
|
|
|
def forward(self, x, conditioner, diffusion_step):
|
|
|
|
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
|
|
|
conditioner = self.conditioner_projection(conditioner)
|
|
|
|
y = x + diffusion_step
|
|
|
|
y = self.dilated_conv(y) + conditioner
|
|
|
|
|
|
|
|
gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
|
|
|
|
|
|
|
y = torch.sigmoid(gate) * torch.tanh(filter_1)
|
|
|
|
y = self.output_projection(y)
|
|
|
|
|
|
|
|
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
|
|
|
|
|
|
|
return (x + residual) / 1.41421356, skip
|
|
|
|
|
|
|
|
|
|
|
|
class DiffNet(nn.Module):
|
|
|
|
def __init__(self, in_dims, n_layers, n_chans, n_hidden):
|
|
|
|
super().__init__()
|
|
|
|
self.encoder_hidden = n_hidden
|
|
|
|
self.residual_layers = n_layers
|
|
|
|
self.residual_channels = n_chans
|
|
|
|
self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
|
|
|
|
self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
|
|
|
|
dim = self.residual_channels
|
|
|
|
self.mlp = nn.Sequential(
|
|
|
|
nn.Linear(dim, dim * 4),
|
|
|
|
Mish(),
|
|
|
|
nn.Linear(dim * 4, dim)
|
|
|
|
)
|
|
|
|
self.residual_layers = nn.ModuleList([
|
|
|
|
ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
|
|
|
|
for i in range(self.residual_layers)
|
|
|
|
])
|
|
|
|
self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
|
|
|
|
self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
|
|
|
|
nn.init.zeros_(self.output_projection.weight)
|
|
|
|
|
|
|
|
def forward(self, spec, diffusion_step, cond):
|
|
|
|
x = spec.squeeze(0)
|
|
|
|
x = self.input_projection(x) # x [B, residual_channel, T]
|
|
|
|
x = F.relu(x)
|
|
|
|
# skip = torch.randn_like(x)
|
|
|
|
diffusion_step = diffusion_step.float()
|
|
|
|
diffusion_step = self.diffusion_embedding(diffusion_step)
|
|
|
|
diffusion_step = self.mlp(diffusion_step)
|
|
|
|
|
|
|
|
x, skip = self.residual_layers[0](x, cond, diffusion_step)
|
|
|
|
# noinspection PyTypeChecker
|
|
|
|
for layer in self.residual_layers[1:]:
|
|
|
|
x, skip_connection = layer.forward(x, cond, diffusion_step)
|
|
|
|
skip = skip + skip_connection
|
|
|
|
x = skip / math.sqrt(len(self.residual_layers))
|
|
|
|
x = self.skip_projection(x)
|
|
|
|
x = F.relu(x)
|
|
|
|
x = self.output_projection(x) # [B, 80, T]
|
|
|
|
return x.unsqueeze(1)
|
|
|
|
|
|
|
|
|
|
|
|
class AfterDiffusion(nn.Module):
|
|
|
|
def __init__(self, spec_max, spec_min, v_type='a'):
|
|
|
|
super().__init__()
|
|
|
|
self.spec_max = spec_max
|
|
|
|
self.spec_min = spec_min
|
|
|
|
self.type = v_type
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x.squeeze(1).permute(0, 2, 1)
|
|
|
|
mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
|
|
|
|
if self.type == 'nsf-hifigan-log10':
|
|
|
|
mel_out = mel_out * 0.434294
|
|
|
|
return mel_out.transpose(2, 1)
|
|
|
|
|
|
|
|
|
|
|
|
class Pred(nn.Module):
|
|
|
|
def __init__(self, alphas_cumprod):
|
|
|
|
super().__init__()
|
|
|
|
self.alphas_cumprod = alphas_cumprod
|
|
|
|
|
|
|
|
def forward(self, x_1, noise_t, t_1, t_prev):
|
|
|
|
a_t = extract(self.alphas_cumprod, t_1).cpu()
|
|
|
|
a_prev = extract(self.alphas_cumprod, t_prev).cpu()
|
|
|
|
a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
|
|
|
|
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
|
|
|
|
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
|
|
|
x_pred = x_1 + x_delta.cpu()
|
|
|
|
|
|
|
|
return x_pred
|
|
|
|
|
|
|
|
|
|
|
|
class GaussianDiffusion(nn.Module):
|
|
|
|
def __init__(self,
|
|
|
|
out_dims=128,
|
|
|
|
n_layers=20,
|
|
|
|
n_chans=384,
|
|
|
|
n_hidden=256,
|
|
|
|
timesteps=1000,
|
|
|
|
k_step=1000,
|
|
|
|
max_beta=0.02,
|
|
|
|
spec_min=-12,
|
|
|
|
spec_max=2):
|
|
|
|
super().__init__()
|
|
|
|
self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
|
|
|
|
self.out_dims = out_dims
|
|
|
|
self.mel_bins = out_dims
|
|
|
|
self.n_hidden = n_hidden
|
|
|
|
betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
|
|
|
|
|
|
|
|
alphas = 1. - betas
|
|
|
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
|
|
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
|
|
|
timesteps, = betas.shape
|
|
|
|
self.num_timesteps = int(timesteps)
|
|
|
|
self.k_step = k_step
|
|
|
|
|
|
|
|
self.noise_list = deque(maxlen=4)
|
|
|
|
|
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32)
|
|
|
|
|
|
|
|
self.register_buffer('betas', to_torch(betas))
|
|
|
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
|
|
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
|
|
|
|
|
|
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
|
|
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
|
|
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
|
|
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
|
|
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
|
|
|
|
|
|
|
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
|
|
|
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
|
|
|
|
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
|
|
|
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
|
|
|
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
|
|
|
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
|
|
|
self.register_buffer('posterior_mean_coef1', to_torch(
|
|
|
|
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
|
|
|
self.register_buffer('posterior_mean_coef2', to_torch(
|
|
|
|
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
|
|
|
|
|
|
|
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
|
|
|
|
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
|
|
|
|
self.ad = AfterDiffusion(self.spec_max, self.spec_min)
|
|
|
|
self.xp = Pred(self.alphas_cumprod)
|
|
|
|
|
|
|
|
def q_mean_variance(self, x_start, t):
|
|
|
|
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
|
|
|
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
|
|
|
|
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
|
|
|
return mean, variance, log_variance
|
|
|
|
|
|
|
|
def predict_start_from_noise(self, x_t, t, noise):
|
|
|
|
return (
|
|
|
|
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
|
|
|
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
|
|
|
)
|
|
|
|
|
|
|
|
def q_posterior(self, x_start, x_t, t):
|
|
|
|
posterior_mean = (
|
|
|
|
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
|
|
|
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
|
|
|
)
|
|
|
|
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
|
|
|
|
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
|
|
|
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
|
|
|
|
|
|
|
def p_mean_variance(self, x, t, cond):
|
|
|
|
noise_pred = self.denoise_fn(x, t, cond=cond)
|
|
|
|
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
|
|
|
|
|
|
|
|
x_recon.clamp_(-1., 1.)
|
|
|
|
|
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
|
|
|
return model_mean, posterior_variance, posterior_log_variance
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
|
|
|
|
b, *_, device = *x.shape, x.device
|
|
|
|
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
|
|
|
|
noise = noise_like(x.shape, device, repeat_noise)
|
|
|
|
# no noise when t == 0
|
|
|
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
|
|
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
|
|
|
|
"""
|
|
|
|
Use the PLMS method from
|
|
|
|
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
|
|
|
|
"""
|
|
|
|
|
|
|
|
def get_x_pred(x, noise_t, t):
|
|
|
|
a_t = extract(self.alphas_cumprod, t)
|
|
|
|
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
|
|
|
|
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
|
|
|
|
|
|
|
|
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
|
|
|
|
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
|
|
|
x_pred = x + x_delta
|
|
|
|
|
|
|
|
return x_pred
|
|
|
|
|
|
|
|
noise_list = self.noise_list
|
|
|
|
noise_pred = self.denoise_fn(x, t, cond=cond)
|
|
|
|
|
|
|
|
if len(noise_list) == 0:
|
|
|
|
x_pred = get_x_pred(x, noise_pred, t)
|
|
|
|
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
|
|
|
|
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
|
|
|
|
elif len(noise_list) == 1:
|
|
|
|
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
|
|
|
|
elif len(noise_list) == 2:
|
|
|
|
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
|
|
|
|
else:
|
|
|
|
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
|
|
|
|
|
|
|
|
x_prev = get_x_pred(x, noise_pred_prime, t)
|
|
|
|
noise_list.append(noise_pred)
|
|
|
|
|
|
|
|
return x_prev
|
|
|
|
|
|
|
|
def q_sample(self, x_start, t, noise=None):
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x_start))
|
|
|
|
return (
|
|
|
|
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
|
|
|
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
|
|
|
)
|
|
|
|
|
|
|
|
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x_start))
|
|
|
|
|
|
|
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
|
|
|
x_recon = self.denoise_fn(x_noisy, t, cond)
|
|
|
|
|
|
|
|
if loss_type == 'l1':
|
|
|
|
loss = (noise - x_recon).abs().mean()
|
|
|
|
elif loss_type == 'l2':
|
|
|
|
loss = F.mse_loss(noise, x_recon)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
return loss
|
|
|
|
|
|
|
|
def org_forward(self,
|
|
|
|
condition,
|
|
|
|
init_noise=None,
|
|
|
|
gt_spec=None,
|
|
|
|
infer=True,
|
|
|
|
infer_speedup=100,
|
|
|
|
method='pndm',
|
|
|
|
k_step=1000,
|
|
|
|
use_tqdm=True):
|
|
|
|
"""
|
|
|
|
conditioning diffusion, use fastspeech2 encoder output as the condition
|
|
|
|
"""
|
|
|
|
cond = condition
|
|
|
|
b, device = condition.shape[0], condition.device
|
|
|
|
if not infer:
|
|
|
|
spec = self.norm_spec(gt_spec)
|
|
|
|
t = torch.randint(0, self.k_step, (b,), device=device).long()
|
|
|
|
norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
|
|
|
|
return self.p_losses(norm_spec, t, cond=cond)
|
|
|
|
else:
|
|
|
|
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
|
|
|
|
|
|
|
|
if gt_spec is None:
|
|
|
|
t = self.k_step
|
|
|
|
if init_noise is None:
|
|
|
|
x = torch.randn(shape, device=device)
|
|
|
|
else:
|
|
|
|
x = init_noise
|
|
|
|
else:
|
|
|
|
t = k_step
|
|
|
|
norm_spec = self.norm_spec(gt_spec)
|
|
|
|
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
|
|
|
|
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
|
|
|
|
|
|
|
|
if method is not None and infer_speedup > 1:
|
|
|
|
if method == 'dpm-solver':
|
2023-06-26 06:57:53 +00:00
|
|
|
from .dpm_solver_pytorch import (
|
|
|
|
DPM_Solver,
|
|
|
|
NoiseScheduleVP,
|
|
|
|
model_wrapper,
|
|
|
|
)
|
2023-05-18 07:46:55 +00:00
|
|
|
# 1. Define the noise schedule.
|
|
|
|
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
|
|
|
|
|
|
|
|
# 2. Convert your discrete-time `model` to the continuous-time
|
|
|
|
# noise prediction model. Here is an example for a diffusion model
|
|
|
|
# `model` with the noise prediction type ("noise") .
|
|
|
|
def my_wrapper(fn):
|
|
|
|
def wrapped(x, t, **kwargs):
|
|
|
|
ret = fn(x, t, **kwargs)
|
|
|
|
if use_tqdm:
|
|
|
|
self.bar.update(1)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
return wrapped
|
|
|
|
|
|
|
|
model_fn = model_wrapper(
|
|
|
|
my_wrapper(self.denoise_fn),
|
|
|
|
noise_schedule,
|
|
|
|
model_type="noise", # or "x_start" or "v" or "score"
|
|
|
|
model_kwargs={"cond": cond}
|
|
|
|
)
|
|
|
|
|
|
|
|
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
|
|
|
|
# (We recommend singlestep DPM-Solver for unconditional sampling)
|
|
|
|
# You can adjust the `steps` to balance the computation
|
|
|
|
# costs and the sample quality.
|
|
|
|
dpm_solver = DPM_Solver(model_fn, noise_schedule)
|
|
|
|
|
|
|
|
steps = t // infer_speedup
|
|
|
|
if use_tqdm:
|
|
|
|
self.bar = tqdm(desc="sample time step", total=steps)
|
|
|
|
x = dpm_solver.sample(
|
|
|
|
x,
|
|
|
|
steps=steps,
|
|
|
|
order=3,
|
|
|
|
skip_type="time_uniform",
|
|
|
|
method="singlestep",
|
|
|
|
)
|
|
|
|
if use_tqdm:
|
|
|
|
self.bar.close()
|
|
|
|
elif method == 'pndm':
|
|
|
|
self.noise_list = deque(maxlen=4)
|
|
|
|
if use_tqdm:
|
|
|
|
for i in tqdm(
|
|
|
|
reversed(range(0, t, infer_speedup)), desc='sample time step',
|
|
|
|
total=t // infer_speedup,
|
|
|
|
):
|
|
|
|
x = self.p_sample_plms(
|
|
|
|
x, torch.full((b,), i, device=device, dtype=torch.long),
|
|
|
|
infer_speedup, cond=cond
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
for i in reversed(range(0, t, infer_speedup)):
|
|
|
|
x = self.p_sample_plms(
|
|
|
|
x, torch.full((b,), i, device=device, dtype=torch.long),
|
|
|
|
infer_speedup, cond=cond
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError(method)
|
|
|
|
else:
|
|
|
|
if use_tqdm:
|
|
|
|
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
|
|
|
|
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
|
|
|
else:
|
|
|
|
for i in reversed(range(0, t)):
|
|
|
|
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
|
|
|
x = x.squeeze(1).transpose(1, 2) # [B, T, M]
|
|
|
|
return self.denorm_spec(x).transpose(2, 1)
|
|
|
|
|
|
|
|
def norm_spec(self, x):
|
|
|
|
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
|
|
|
|
|
|
|
|
def denorm_spec(self, x):
|
|
|
|
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
|
|
|
|
|
|
|
|
def get_x_pred(self, x_1, noise_t, t_1, t_prev):
|
|
|
|
a_t = extract(self.alphas_cumprod, t_1)
|
|
|
|
a_prev = extract(self.alphas_cumprod, t_prev)
|
|
|
|
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
|
|
|
|
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
|
|
|
|
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
|
|
|
x_pred = x_1 + x_delta
|
|
|
|
return x_pred
|
|
|
|
|
|
|
|
def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
|
|
|
|
cond = torch.randn([1, self.n_hidden, 10]).cpu()
|
|
|
|
if init_noise is None:
|
|
|
|
x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
|
|
|
|
else:
|
|
|
|
x = init_noise
|
|
|
|
pndms = 100
|
|
|
|
|
|
|
|
org_y_x = self.org_forward(cond, init_noise=x)
|
|
|
|
|
|
|
|
device = cond.device
|
|
|
|
n_frames = cond.shape[2]
|
|
|
|
step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
|
|
|
|
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
|
|
|
|
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
|
|
|
|
|
|
|
|
ot = step_range[0]
|
|
|
|
ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
|
|
|
|
if export_denoise:
|
|
|
|
torch.onnx.export(
|
|
|
|
self.denoise_fn,
|
|
|
|
(x.cpu(), ot_1.cpu(), cond.cpu()),
|
|
|
|
f"{project_name}_denoise.onnx",
|
|
|
|
input_names=["noise", "time", "condition"],
|
|
|
|
output_names=["noise_pred"],
|
|
|
|
dynamic_axes={
|
|
|
|
"noise": [3],
|
|
|
|
"condition": [2]
|
|
|
|
},
|
|
|
|
opset_version=16
|
|
|
|
)
|
|
|
|
|
|
|
|
for t in step_range:
|
|
|
|
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
|
|
|
|
noise_pred = self.denoise_fn(x, t_1, cond)
|
|
|
|
t_prev = t_1 - pndms
|
|
|
|
t_prev = t_prev * (t_prev > 0)
|
|
|
|
if plms_noise_stage == 0:
|
|
|
|
if export_pred:
|
|
|
|
torch.onnx.export(
|
|
|
|
self.xp,
|
|
|
|
(x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
|
|
|
|
f"{project_name}_pred.onnx",
|
|
|
|
input_names=["noise", "noise_pred", "time", "time_prev"],
|
|
|
|
output_names=["noise_pred_o"],
|
|
|
|
dynamic_axes={
|
|
|
|
"noise": [3],
|
|
|
|
"noise_pred": [3]
|
|
|
|
},
|
|
|
|
opset_version=16
|
|
|
|
)
|
|
|
|
|
|
|
|
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
|
|
|
|
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
|
|
|
|
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
|
|
|
|
|
|
|
|
elif plms_noise_stage == 1:
|
|
|
|
noise_pred_prime = predict_stage1(noise_pred, noise_list)
|
|
|
|
|
|
|
|
elif plms_noise_stage == 2:
|
|
|
|
noise_pred_prime = predict_stage2(noise_pred, noise_list)
|
|
|
|
|
|
|
|
else:
|
|
|
|
noise_pred_prime = predict_stage3(noise_pred, noise_list)
|
|
|
|
|
|
|
|
noise_pred = noise_pred.unsqueeze(0)
|
|
|
|
|
|
|
|
if plms_noise_stage < 3:
|
|
|
|
noise_list = torch.cat((noise_list, noise_pred), dim=0)
|
|
|
|
plms_noise_stage = plms_noise_stage + 1
|
|
|
|
|
|
|
|
else:
|
|
|
|
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
|
|
|
|
|
|
|
|
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
|
|
|
|
if export_after:
|
|
|
|
torch.onnx.export(
|
|
|
|
self.ad,
|
|
|
|
x.cpu(),
|
|
|
|
f"{project_name}_after.onnx",
|
|
|
|
input_names=["x"],
|
|
|
|
output_names=["mel_out"],
|
|
|
|
dynamic_axes={
|
|
|
|
"x": [3]
|
|
|
|
},
|
|
|
|
opset_version=16
|
|
|
|
)
|
|
|
|
x = self.ad(x)
|
|
|
|
|
|
|
|
print((x == org_y_x).all())
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
|
|
|
|
cond = condition
|
|
|
|
x = init_noise
|
|
|
|
|
|
|
|
device = cond.device
|
|
|
|
n_frames = cond.shape[2]
|
|
|
|
step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
|
|
|
|
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
|
|
|
|
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
|
|
|
|
|
|
|
|
for t in step_range:
|
|
|
|
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
|
|
|
|
noise_pred = self.denoise_fn(x, t_1, cond)
|
|
|
|
t_prev = t_1 - pndms
|
|
|
|
t_prev = t_prev * (t_prev > 0)
|
|
|
|
if plms_noise_stage == 0:
|
|
|
|
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
|
|
|
|
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
|
|
|
|
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
|
|
|
|
|
|
|
|
elif plms_noise_stage == 1:
|
|
|
|
noise_pred_prime = predict_stage1(noise_pred, noise_list)
|
|
|
|
|
|
|
|
elif plms_noise_stage == 2:
|
|
|
|
noise_pred_prime = predict_stage2(noise_pred, noise_list)
|
|
|
|
|
|
|
|
else:
|
|
|
|
noise_pred_prime = predict_stage3(noise_pred, noise_list)
|
|
|
|
|
|
|
|
noise_pred = noise_pred.unsqueeze(0)
|
|
|
|
|
|
|
|
if plms_noise_stage < 3:
|
|
|
|
noise_list = torch.cat((noise_list, noise_pred), dim=0)
|
|
|
|
plms_noise_stage = plms_noise_stage + 1
|
|
|
|
|
|
|
|
else:
|
|
|
|
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
|
|
|
|
|
|
|
|
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
|
|
|
|
x = self.ad(x)
|
|
|
|
return x
|