74 lines
3.0 KiB
Python
74 lines
3.0 KiB
Python
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from diffusion.unit2mel import load_model_vocoder
|
||
|
|
||
|
|
||
|
class DiffGtMel:
|
||
|
def __init__(self, project_path=None, device=None):
|
||
|
self.project_path = project_path
|
||
|
if device is not None:
|
||
|
self.device = device
|
||
|
else:
|
||
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||
|
self.model = None
|
||
|
self.vocoder = None
|
||
|
self.args = None
|
||
|
|
||
|
def flush_model(self, project_path, ddsp_config=None):
|
||
|
if (self.model is None) or (project_path != self.project_path):
|
||
|
model, vocoder, args = load_model_vocoder(project_path, device=self.device)
|
||
|
if self.check_args(ddsp_config, args):
|
||
|
self.model = model
|
||
|
self.vocoder = vocoder
|
||
|
self.args = args
|
||
|
|
||
|
def check_args(self, args1, args2):
|
||
|
if args1.data.block_size != args2.data.block_size:
|
||
|
raise ValueError("DDSP与DIFF模型的block_size不一致")
|
||
|
if args1.data.sampling_rate != args2.data.sampling_rate:
|
||
|
raise ValueError("DDSP与DIFF模型的sampling_rate不一致")
|
||
|
if args1.data.encoder != args2.data.encoder:
|
||
|
raise ValueError("DDSP与DIFF模型的encoder不一致")
|
||
|
return True
|
||
|
|
||
|
def __call__(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm',
|
||
|
spk_mix_dict=None, start_frame=0):
|
||
|
input_mel = self.vocoder.extract(audio, self.args.data.sampling_rate)
|
||
|
out_mel = self.model(
|
||
|
hubert,
|
||
|
f0,
|
||
|
volume,
|
||
|
spk_id=spk_id,
|
||
|
spk_mix_dict=spk_mix_dict,
|
||
|
gt_spec=input_mel,
|
||
|
infer=True,
|
||
|
infer_speedup=acc,
|
||
|
method=method,
|
||
|
k_step=k_step,
|
||
|
use_tqdm=False)
|
||
|
if start_frame > 0:
|
||
|
out_mel = out_mel[:, start_frame:, :]
|
||
|
f0 = f0[:, start_frame:, :]
|
||
|
output = self.vocoder.infer(out_mel, f0)
|
||
|
if start_frame > 0:
|
||
|
output = F.pad(output, (start_frame * self.vocoder.vocoder_hop_size, 0))
|
||
|
return output
|
||
|
|
||
|
def infer(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', silence_front=0,
|
||
|
use_silence=False, spk_mix_dict=None):
|
||
|
start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size)
|
||
|
if use_silence:
|
||
|
audio = audio[:, start_frame * self.vocoder.vocoder_hop_size:]
|
||
|
f0 = f0[:, start_frame:, :]
|
||
|
hubert = hubert[:, start_frame:, :]
|
||
|
volume = volume[:, start_frame:, :]
|
||
|
_start_frame = 0
|
||
|
else:
|
||
|
_start_frame = start_frame
|
||
|
audio = self.__call__(audio, f0, hubert, volume, acc=acc, spk_id=spk_id, k_step=k_step,
|
||
|
method=method, spk_mix_dict=spk_mix_dict, start_frame=_start_frame)
|
||
|
if use_silence:
|
||
|
if start_frame > 0:
|
||
|
audio = F.pad(audio, (start_frame * self.vocoder.vocoder_hop_size, 0))
|
||
|
return audio
|