503 lines
16 KiB
Python
503 lines
16 KiB
Python
|
import os
|
||
|
import glob
|
||
|
import re
|
||
|
import sys
|
||
|
import argparse
|
||
|
import logging
|
||
|
import json
|
||
|
import subprocess
|
||
|
import random
|
||
|
|
||
|
import librosa
|
||
|
import numpy as np
|
||
|
from scipy.io.wavfile import read
|
||
|
import torch
|
||
|
from torch.nn import functional as F
|
||
|
from modules.commons import sequence_mask
|
||
|
from hubert import hubert_model
|
||
|
MATPLOTLIB_FLAG = False
|
||
|
|
||
|
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||
|
logger = logging
|
||
|
|
||
|
f0_bin = 256
|
||
|
f0_max = 1100.0
|
||
|
f0_min = 50.0
|
||
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||
|
|
||
|
|
||
|
# def normalize_f0(f0, random_scale=True):
|
||
|
# f0_norm = f0.clone() # create a copy of the input Tensor
|
||
|
# batch_size, _, frame_length = f0_norm.shape
|
||
|
# for i in range(batch_size):
|
||
|
# means = torch.mean(f0_norm[i, 0, :])
|
||
|
# if random_scale:
|
||
|
# factor = random.uniform(0.8, 1.2)
|
||
|
# else:
|
||
|
# factor = 1
|
||
|
# f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor
|
||
|
# return f0_norm
|
||
|
# def normalize_f0(f0, random_scale=True):
|
||
|
# means = torch.mean(f0[:, 0, :], dim=1, keepdim=True)
|
||
|
# if random_scale:
|
||
|
# factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device)
|
||
|
# else:
|
||
|
# factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
|
||
|
# f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
||
|
# return f0_norm
|
||
|
def normalize_f0(f0, x_mask, uv, random_scale=True):
|
||
|
# calculate means based on x_mask
|
||
|
uv_sum = torch.sum(uv, dim=1, keepdim=True)
|
||
|
uv_sum[uv_sum == 0] = 9999
|
||
|
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
|
||
|
|
||
|
if random_scale:
|
||
|
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
|
||
|
else:
|
||
|
factor = torch.ones(f0.shape[0], 1).to(f0.device)
|
||
|
# normalize f0 based on means and factor
|
||
|
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
||
|
if torch.isnan(f0_norm).any():
|
||
|
exit(0)
|
||
|
return f0_norm * x_mask
|
||
|
|
||
|
|
||
|
def plot_data_to_numpy(x, y):
|
||
|
global MATPLOTLIB_FLAG
|
||
|
if not MATPLOTLIB_FLAG:
|
||
|
import matplotlib
|
||
|
matplotlib.use("Agg")
|
||
|
MATPLOTLIB_FLAG = True
|
||
|
mpl_logger = logging.getLogger('matplotlib')
|
||
|
mpl_logger.setLevel(logging.WARNING)
|
||
|
import matplotlib.pylab as plt
|
||
|
import numpy as np
|
||
|
|
||
|
fig, ax = plt.subplots(figsize=(10, 2))
|
||
|
plt.plot(x)
|
||
|
plt.plot(y)
|
||
|
plt.tight_layout()
|
||
|
|
||
|
fig.canvas.draw()
|
||
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
|
plt.close()
|
||
|
return data
|
||
|
|
||
|
|
||
|
|
||
|
def interpolate_f0(f0):
|
||
|
'''
|
||
|
对F0进行插值处理
|
||
|
'''
|
||
|
|
||
|
data = np.reshape(f0, (f0.size, 1))
|
||
|
|
||
|
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
||
|
vuv_vector[data > 0.0] = 1.0
|
||
|
vuv_vector[data <= 0.0] = 0.0
|
||
|
|
||
|
ip_data = data
|
||
|
|
||
|
frame_number = data.size
|
||
|
last_value = 0.0
|
||
|
for i in range(frame_number):
|
||
|
if data[i] <= 0.0:
|
||
|
j = i + 1
|
||
|
for j in range(i + 1, frame_number):
|
||
|
if data[j] > 0.0:
|
||
|
break
|
||
|
if j < frame_number - 1:
|
||
|
if last_value > 0.0:
|
||
|
step = (data[j] - data[i - 1]) / float(j - i)
|
||
|
for k in range(i, j):
|
||
|
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
||
|
else:
|
||
|
for k in range(i, j):
|
||
|
ip_data[k] = data[j]
|
||
|
else:
|
||
|
for k in range(i, frame_number):
|
||
|
ip_data[k] = last_value
|
||
|
else:
|
||
|
ip_data[i] = data[i]
|
||
|
last_value = data[i]
|
||
|
|
||
|
return ip_data[:,0], vuv_vector[:,0]
|
||
|
|
||
|
|
||
|
def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
||
|
import parselmouth
|
||
|
x = wav_numpy
|
||
|
if p_len is None:
|
||
|
p_len = x.shape[0]//hop_length
|
||
|
else:
|
||
|
assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
|
||
|
time_step = hop_length / sampling_rate * 1000
|
||
|
f0_min = 50
|
||
|
f0_max = 1100
|
||
|
f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
|
||
|
time_step=time_step / 1000, voicing_threshold=0.6,
|
||
|
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
||
|
|
||
|
pad_size=(p_len - len(f0) + 1) // 2
|
||
|
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
||
|
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
||
|
return f0
|
||
|
|
||
|
def resize_f0(x, target_len):
|
||
|
source = np.array(x)
|
||
|
source[source<0.001] = np.nan
|
||
|
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
||
|
res = np.nan_to_num(target)
|
||
|
return res
|
||
|
|
||
|
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
||
|
import pyworld
|
||
|
if p_len is None:
|
||
|
p_len = wav_numpy.shape[0]//hop_length
|
||
|
f0, t = pyworld.dio(
|
||
|
wav_numpy.astype(np.double),
|
||
|
fs=sampling_rate,
|
||
|
f0_ceil=800,
|
||
|
frame_period=1000 * hop_length / sampling_rate,
|
||
|
)
|
||
|
f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
|
||
|
for index, pitch in enumerate(f0):
|
||
|
f0[index] = round(pitch, 1)
|
||
|
return resize_f0(f0, p_len)
|
||
|
|
||
|
def f0_to_coarse(f0):
|
||
|
is_torch = isinstance(f0, torch.Tensor)
|
||
|
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
|
||
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
|
||
|
|
||
|
f0_mel[f0_mel <= 1] = 1
|
||
|
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
|
||
|
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
|
||
|
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
|
||
|
return f0_coarse
|
||
|
|
||
|
|
||
|
def get_hubert_model():
|
||
|
vec_path = "hubert/checkpoint_best_legacy_500.pt"
|
||
|
print("load model(s) from {}".format(vec_path))
|
||
|
from fairseq import checkpoint_utils
|
||
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||
|
[vec_path],
|
||
|
suffix="",
|
||
|
)
|
||
|
model = models[0]
|
||
|
model.eval()
|
||
|
return model
|
||
|
|
||
|
def get_hubert_content(hmodel, wav_16k_tensor):
|
||
|
feats = wav_16k_tensor
|
||
|
if feats.dim() == 2: # double channels
|
||
|
feats = feats.mean(-1)
|
||
|
assert feats.dim() == 1, feats.dim()
|
||
|
feats = feats.view(1, -1)
|
||
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
||
|
inputs = {
|
||
|
"source": feats.to(wav_16k_tensor.device),
|
||
|
"padding_mask": padding_mask.to(wav_16k_tensor.device),
|
||
|
"output_layer": 9, # layer 9
|
||
|
}
|
||
|
with torch.no_grad():
|
||
|
logits = hmodel.extract_features(**inputs)
|
||
|
feats = hmodel.final_proj(logits[0])
|
||
|
return feats.transpose(1, 2)
|
||
|
|
||
|
|
||
|
def get_content(cmodel, y):
|
||
|
with torch.no_grad():
|
||
|
c = cmodel.extract_features(y.squeeze(1))[0]
|
||
|
c = c.transpose(1, 2)
|
||
|
return c
|
||
|
|
||
|
|
||
|
|
||
|
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
||
|
assert os.path.isfile(checkpoint_path)
|
||
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||
|
iteration = checkpoint_dict['iteration']
|
||
|
learning_rate = checkpoint_dict['learning_rate']
|
||
|
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
|
||
|
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||
|
saved_state_dict = checkpoint_dict['model']
|
||
|
if hasattr(model, 'module'):
|
||
|
state_dict = model.module.state_dict()
|
||
|
else:
|
||
|
state_dict = model.state_dict()
|
||
|
new_state_dict = {}
|
||
|
for k, v in state_dict.items():
|
||
|
try:
|
||
|
# assert "dec" in k or "disc" in k
|
||
|
# print("load", k)
|
||
|
new_state_dict[k] = saved_state_dict[k]
|
||
|
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
|
||
|
except:
|
||
|
print("error, %s is not in the checkpoint" % k)
|
||
|
logger.info("%s is not in the checkpoint" % k)
|
||
|
new_state_dict[k] = v
|
||
|
if hasattr(model, 'module'):
|
||
|
model.module.load_state_dict(new_state_dict)
|
||
|
else:
|
||
|
model.load_state_dict(new_state_dict)
|
||
|
print("load ")
|
||
|
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
||
|
checkpoint_path, iteration))
|
||
|
return model, optimizer, learning_rate, iteration
|
||
|
|
||
|
|
||
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||
|
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
||
|
iteration, checkpoint_path))
|
||
|
if hasattr(model, 'module'):
|
||
|
state_dict = model.module.state_dict()
|
||
|
else:
|
||
|
state_dict = model.state_dict()
|
||
|
torch.save({'model': state_dict,
|
||
|
'iteration': iteration,
|
||
|
'optimizer': optimizer.state_dict(),
|
||
|
'learning_rate': learning_rate}, checkpoint_path)
|
||
|
|
||
|
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
|
||
|
"""Freeing up space by deleting saved ckpts
|
||
|
|
||
|
Arguments:
|
||
|
path_to_models -- Path to the model directory
|
||
|
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||
|
sort_by_time -- True -> chronologically delete ckpts
|
||
|
False -> lexicographically delete ckpts
|
||
|
"""
|
||
|
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
||
|
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
|
||
|
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
|
||
|
sort_key = time_key if sort_by_time else name_key
|
||
|
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
|
||
|
to_del = [os.path.join(path_to_models, fn) for fn in
|
||
|
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
|
||
|
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
|
||
|
del_routine = lambda x: [os.remove(x), del_info(x)]
|
||
|
rs = [del_routine(fn) for fn in to_del]
|
||
|
|
||
|
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
||
|
for k, v in scalars.items():
|
||
|
writer.add_scalar(k, v, global_step)
|
||
|
for k, v in histograms.items():
|
||
|
writer.add_histogram(k, v, global_step)
|
||
|
for k, v in images.items():
|
||
|
writer.add_image(k, v, global_step, dataformats='HWC')
|
||
|
for k, v in audios.items():
|
||
|
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||
|
|
||
|
|
||
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
||
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||
|
x = f_list[-1]
|
||
|
print(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def plot_spectrogram_to_numpy(spectrogram):
|
||
|
global MATPLOTLIB_FLAG
|
||
|
if not MATPLOTLIB_FLAG:
|
||
|
import matplotlib
|
||
|
matplotlib.use("Agg")
|
||
|
MATPLOTLIB_FLAG = True
|
||
|
mpl_logger = logging.getLogger('matplotlib')
|
||
|
mpl_logger.setLevel(logging.WARNING)
|
||
|
import matplotlib.pylab as plt
|
||
|
import numpy as np
|
||
|
|
||
|
fig, ax = plt.subplots(figsize=(10,2))
|
||
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
||
|
interpolation='none')
|
||
|
plt.colorbar(im, ax=ax)
|
||
|
plt.xlabel("Frames")
|
||
|
plt.ylabel("Channels")
|
||
|
plt.tight_layout()
|
||
|
|
||
|
fig.canvas.draw()
|
||
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
|
plt.close()
|
||
|
return data
|
||
|
|
||
|
|
||
|
def plot_alignment_to_numpy(alignment, info=None):
|
||
|
global MATPLOTLIB_FLAG
|
||
|
if not MATPLOTLIB_FLAG:
|
||
|
import matplotlib
|
||
|
matplotlib.use("Agg")
|
||
|
MATPLOTLIB_FLAG = True
|
||
|
mpl_logger = logging.getLogger('matplotlib')
|
||
|
mpl_logger.setLevel(logging.WARNING)
|
||
|
import matplotlib.pylab as plt
|
||
|
import numpy as np
|
||
|
|
||
|
fig, ax = plt.subplots(figsize=(6, 4))
|
||
|
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
||
|
interpolation='none')
|
||
|
fig.colorbar(im, ax=ax)
|
||
|
xlabel = 'Decoder timestep'
|
||
|
if info is not None:
|
||
|
xlabel += '\n\n' + info
|
||
|
plt.xlabel(xlabel)
|
||
|
plt.ylabel('Encoder timestep')
|
||
|
plt.tight_layout()
|
||
|
|
||
|
fig.canvas.draw()
|
||
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
|
plt.close()
|
||
|
return data
|
||
|
|
||
|
|
||
|
def load_wav_to_torch(full_path):
|
||
|
sampling_rate, data = read(full_path)
|
||
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||
|
|
||
|
|
||
|
def load_filepaths_and_text(filename, split="|"):
|
||
|
with open(filename, encoding='utf-8') as f:
|
||
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
||
|
return filepaths_and_text
|
||
|
|
||
|
|
||
|
def get_hparams(init=True):
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
||
|
help='JSON file for configuration')
|
||
|
parser.add_argument('-m', '--model', type=str, required=True,
|
||
|
help='Model name')
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
model_dir = os.path.join("./logs", args.model)
|
||
|
|
||
|
if not os.path.exists(model_dir):
|
||
|
os.makedirs(model_dir)
|
||
|
|
||
|
config_path = args.config
|
||
|
config_save_path = os.path.join(model_dir, "config.json")
|
||
|
if init:
|
||
|
with open(config_path, "r") as f:
|
||
|
data = f.read()
|
||
|
with open(config_save_path, "w") as f:
|
||
|
f.write(data)
|
||
|
else:
|
||
|
with open(config_save_path, "r") as f:
|
||
|
data = f.read()
|
||
|
config = json.loads(data)
|
||
|
|
||
|
hparams = HParams(**config)
|
||
|
hparams.model_dir = model_dir
|
||
|
return hparams
|
||
|
|
||
|
|
||
|
def get_hparams_from_dir(model_dir):
|
||
|
config_save_path = os.path.join(model_dir, "config.json")
|
||
|
with open(config_save_path, "r") as f:
|
||
|
data = f.read()
|
||
|
config = json.loads(data)
|
||
|
|
||
|
hparams =HParams(**config)
|
||
|
hparams.model_dir = model_dir
|
||
|
return hparams
|
||
|
|
||
|
|
||
|
def get_hparams_from_file(config_path):
|
||
|
with open(config_path, "r") as f:
|
||
|
data = f.read()
|
||
|
config = json.loads(data)
|
||
|
|
||
|
hparams =HParams(**config)
|
||
|
return hparams
|
||
|
|
||
|
|
||
|
def check_git_hash(model_dir):
|
||
|
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||
|
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||
|
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||
|
source_dir
|
||
|
))
|
||
|
return
|
||
|
|
||
|
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||
|
|
||
|
path = os.path.join(model_dir, "githash")
|
||
|
if os.path.exists(path):
|
||
|
saved_hash = open(path).read()
|
||
|
if saved_hash != cur_hash:
|
||
|
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
||
|
saved_hash[:8], cur_hash[:8]))
|
||
|
else:
|
||
|
open(path, "w").write(cur_hash)
|
||
|
|
||
|
|
||
|
def get_logger(model_dir, filename="train.log"):
|
||
|
global logger
|
||
|
logger = logging.getLogger(os.path.basename(model_dir))
|
||
|
logger.setLevel(logging.DEBUG)
|
||
|
|
||
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||
|
if not os.path.exists(model_dir):
|
||
|
os.makedirs(model_dir)
|
||
|
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||
|
h.setLevel(logging.DEBUG)
|
||
|
h.setFormatter(formatter)
|
||
|
logger.addHandler(h)
|
||
|
return logger
|
||
|
|
||
|
|
||
|
def repeat_expand_2d(content, target_len):
|
||
|
# content : [h, t]
|
||
|
|
||
|
src_len = content.shape[-1]
|
||
|
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
|
||
|
temp = torch.arange(src_len+1) * target_len / src_len
|
||
|
current_pos = 0
|
||
|
for i in range(target_len):
|
||
|
if i < temp[current_pos+1]:
|
||
|
target[:, i] = content[:, current_pos]
|
||
|
else:
|
||
|
current_pos += 1
|
||
|
target[:, i] = content[:, current_pos]
|
||
|
|
||
|
return target
|
||
|
|
||
|
|
||
|
class HParams():
|
||
|
def __init__(self, **kwargs):
|
||
|
for k, v in kwargs.items():
|
||
|
if type(v) == dict:
|
||
|
v = HParams(**v)
|
||
|
self[k] = v
|
||
|
|
||
|
def keys(self):
|
||
|
return self.__dict__.keys()
|
||
|
|
||
|
def items(self):
|
||
|
return self.__dict__.items()
|
||
|
|
||
|
def values(self):
|
||
|
return self.__dict__.values()
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.__dict__)
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
return getattr(self, key)
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
return setattr(self, key, value)
|
||
|
|
||
|
def __contains__(self, key):
|
||
|
return key in self.__dict__
|
||
|
|
||
|
def __repr__(self):
|
||
|
return self.__dict__.__repr__()
|
||
|
|