109 lines
3.7 KiB
Python
109 lines
3.7 KiB
Python
|
import math
|
||
|
from math import sqrt
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from torch.nn import Mish
|
||
|
|
||
|
|
||
|
class Conv1d(torch.nn.Conv1d):
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
nn.init.kaiming_normal_(self.weight)
|
||
|
|
||
|
|
||
|
class SinusoidalPosEmb(nn.Module):
|
||
|
def __init__(self, dim):
|
||
|
super().__init__()
|
||
|
self.dim = dim
|
||
|
|
||
|
def forward(self, x):
|
||
|
device = x.device
|
||
|
half_dim = self.dim // 2
|
||
|
emb = math.log(10000) / (half_dim - 1)
|
||
|
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
||
|
emb = x[:, None] * emb[None, :]
|
||
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
||
|
return emb
|
||
|
|
||
|
|
||
|
class ResidualBlock(nn.Module):
|
||
|
def __init__(self, encoder_hidden, residual_channels, dilation):
|
||
|
super().__init__()
|
||
|
self.residual_channels = residual_channels
|
||
|
self.dilated_conv = nn.Conv1d(
|
||
|
residual_channels,
|
||
|
2 * residual_channels,
|
||
|
kernel_size=3,
|
||
|
padding=dilation,
|
||
|
dilation=dilation
|
||
|
)
|
||
|
self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
|
||
|
self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1)
|
||
|
self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1)
|
||
|
|
||
|
def forward(self, x, conditioner, diffusion_step):
|
||
|
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
||
|
conditioner = self.conditioner_projection(conditioner)
|
||
|
y = x + diffusion_step
|
||
|
|
||
|
y = self.dilated_conv(y) + conditioner
|
||
|
|
||
|
# Using torch.split instead of torch.chunk to avoid using onnx::Slice
|
||
|
gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
||
|
y = torch.sigmoid(gate) * torch.tanh(filter)
|
||
|
|
||
|
y = self.output_projection(y)
|
||
|
|
||
|
# Using torch.split instead of torch.chunk to avoid using onnx::Slice
|
||
|
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
||
|
return (x + residual) / math.sqrt(2.0), skip
|
||
|
|
||
|
|
||
|
class WaveNet(nn.Module):
|
||
|
def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
|
||
|
super().__init__()
|
||
|
self.input_projection = Conv1d(in_dims, n_chans, 1)
|
||
|
self.diffusion_embedding = SinusoidalPosEmb(n_chans)
|
||
|
self.mlp = nn.Sequential(
|
||
|
nn.Linear(n_chans, n_chans * 4),
|
||
|
Mish(),
|
||
|
nn.Linear(n_chans * 4, n_chans)
|
||
|
)
|
||
|
self.residual_layers = nn.ModuleList([
|
||
|
ResidualBlock(
|
||
|
encoder_hidden=n_hidden,
|
||
|
residual_channels=n_chans,
|
||
|
dilation=1
|
||
|
)
|
||
|
for i in range(n_layers)
|
||
|
])
|
||
|
self.skip_projection = Conv1d(n_chans, n_chans, 1)
|
||
|
self.output_projection = Conv1d(n_chans, in_dims, 1)
|
||
|
nn.init.zeros_(self.output_projection.weight)
|
||
|
|
||
|
def forward(self, spec, diffusion_step, cond):
|
||
|
"""
|
||
|
:param spec: [B, 1, M, T]
|
||
|
:param diffusion_step: [B, 1]
|
||
|
:param cond: [B, M, T]
|
||
|
:return:
|
||
|
"""
|
||
|
x = spec.squeeze(1)
|
||
|
x = self.input_projection(x) # [B, residual_channel, T]
|
||
|
|
||
|
x = F.relu(x)
|
||
|
diffusion_step = self.diffusion_embedding(diffusion_step)
|
||
|
diffusion_step = self.mlp(diffusion_step)
|
||
|
skip = []
|
||
|
for layer in self.residual_layers:
|
||
|
x, skip_connection = layer(x, cond, diffusion_step)
|
||
|
skip.append(skip_connection)
|
||
|
|
||
|
x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
|
||
|
x = self.skip_projection(x)
|
||
|
x = F.relu(x)
|
||
|
x = self.output_projection(x) # [B, mel_bins, T]
|
||
|
return x[:, None, :, :]
|