202 lines
7.7 KiB
Python
202 lines
7.7 KiB
Python
|
import math,pdb
|
|||
|
import torch,pynvml
|
|||
|
from torch.nn.functional import normalize
|
|||
|
from time import time
|
|||
|
import numpy as np
|
|||
|
# device=torch.device("cuda:0")
|
|||
|
def _kpp(data: torch.Tensor, k: int, sample_size: int = -1):
|
|||
|
""" Picks k points in the data based on the kmeans++ method.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
data : torch.Tensor
|
|||
|
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
|
|||
|
data, rank 2 multidimensional data, in which case one
|
|||
|
row is one observation.
|
|||
|
k : int
|
|||
|
Number of samples to generate.
|
|||
|
sample_size : int
|
|||
|
sample data to avoid memory overflow during calculation
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
init : ndarray
|
|||
|
A 'k' by 'N' containing the initial centroids.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
|
|||
|
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
|
|||
|
on Discrete Algorithms, 2007.
|
|||
|
.. [2] scipy/cluster/vq.py: _kpp
|
|||
|
"""
|
|||
|
batch_size=data.shape[0]
|
|||
|
if batch_size>sample_size:
|
|||
|
data = data[torch.randint(0, batch_size,[sample_size], device=data.device)]
|
|||
|
dims = data.shape[1] if len(data.shape) > 1 else 1
|
|||
|
init = torch.zeros((k, dims)).to(data.device)
|
|||
|
r = torch.distributions.uniform.Uniform(0, 1)
|
|||
|
for i in range(k):
|
|||
|
if i == 0:
|
|||
|
init[i, :] = data[torch.randint(data.shape[0], [1])]
|
|||
|
else:
|
|||
|
D2 = torch.cdist(init[:i, :][None, :], data[None, :], p=2)[0].amin(dim=0)
|
|||
|
probs = D2 / torch.sum(D2)
|
|||
|
cumprobs = torch.cumsum(probs, dim=0)
|
|||
|
init[i, :] = data[torch.searchsorted(cumprobs, r.sample([1]).to(data.device))]
|
|||
|
return init
|
|||
|
class KMeansGPU:
|
|||
|
'''
|
|||
|
Kmeans clustering algorithm implemented with PyTorch
|
|||
|
|
|||
|
Parameters:
|
|||
|
n_clusters: int,
|
|||
|
Number of clusters
|
|||
|
|
|||
|
max_iter: int, default: 100
|
|||
|
Maximum number of iterations
|
|||
|
|
|||
|
tol: float, default: 0.0001
|
|||
|
Tolerance
|
|||
|
|
|||
|
verbose: int, default: 0
|
|||
|
Verbosity
|
|||
|
|
|||
|
mode: {'euclidean', 'cosine'}, default: 'euclidean'
|
|||
|
Type of distance measure
|
|||
|
|
|||
|
init_method: {'random', 'point', '++'}
|
|||
|
Type of initialization
|
|||
|
|
|||
|
minibatch: {None, int}, default: None
|
|||
|
Batch size of MinibatchKmeans algorithm
|
|||
|
if None perform full KMeans algorithm
|
|||
|
|
|||
|
Attributes:
|
|||
|
centroids: torch.Tensor, shape: [n_clusters, n_features]
|
|||
|
cluster centroids
|
|||
|
'''
|
|||
|
def __init__(self, n_clusters, max_iter=200, tol=1e-4, verbose=0, mode="euclidean",device=torch.device("cuda:0")):
|
|||
|
self.n_clusters = n_clusters
|
|||
|
self.max_iter = max_iter
|
|||
|
self.tol = tol
|
|||
|
self.verbose = verbose
|
|||
|
self.mode = mode
|
|||
|
self.device=device
|
|||
|
pynvml.nvmlInit()
|
|||
|
gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(device.index)
|
|||
|
info = pynvml.nvmlDeviceGetMemoryInfo(gpu_handle)
|
|||
|
self.minibatch=int(33e6/self.n_clusters*info.free/ 1024 / 1024 / 1024)
|
|||
|
print("free_mem/GB:",info.free/ 1024 / 1024 / 1024,"minibatch:",self.minibatch)
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def cos_sim(a, b):
|
|||
|
"""
|
|||
|
Compute cosine similarity of 2 sets of vectors
|
|||
|
|
|||
|
Parameters:
|
|||
|
a: torch.Tensor, shape: [m, n_features]
|
|||
|
|
|||
|
b: torch.Tensor, shape: [n, n_features]
|
|||
|
"""
|
|||
|
return normalize(a, dim=-1) @ normalize(b, dim=-1).transpose(-2, -1)
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def euc_sim(a, b):
|
|||
|
"""
|
|||
|
Compute euclidean similarity of 2 sets of vectors
|
|||
|
Parameters:
|
|||
|
a: torch.Tensor, shape: [m, n_features]
|
|||
|
b: torch.Tensor, shape: [n, n_features]
|
|||
|
"""
|
|||
|
return 2 * a @ b.transpose(-2, -1) -(a**2).sum(dim=1)[..., :, None] - (b**2).sum(dim=1)[..., None, :]
|
|||
|
|
|||
|
def max_sim(self, a, b):
|
|||
|
"""
|
|||
|
Compute maximum similarity (or minimum distance) of each vector
|
|||
|
in a with all of the vectors in b
|
|||
|
Parameters:
|
|||
|
a: torch.Tensor, shape: [m, n_features]
|
|||
|
b: torch.Tensor, shape: [n, n_features]
|
|||
|
"""
|
|||
|
if self.mode == 'cosine':
|
|||
|
sim_func = self.cos_sim
|
|||
|
elif self.mode == 'euclidean':
|
|||
|
sim_func = self.euc_sim
|
|||
|
sim = sim_func(a, b)
|
|||
|
max_sim_v, max_sim_i = sim.max(dim=-1)
|
|||
|
return max_sim_v, max_sim_i
|
|||
|
|
|||
|
def fit_predict(self, X):
|
|||
|
"""
|
|||
|
Combination of fit() and predict() methods.
|
|||
|
This is faster than calling fit() and predict() seperately.
|
|||
|
Parameters:
|
|||
|
X: torch.Tensor, shape: [n_samples, n_features]
|
|||
|
centroids: {torch.Tensor, None}, default: None
|
|||
|
if given, centroids will be initialized with given tensor
|
|||
|
if None, centroids will be randomly chosen from X
|
|||
|
Return:
|
|||
|
labels: torch.Tensor, shape: [n_samples]
|
|||
|
|
|||
|
mini_=33kk/k*remain
|
|||
|
mini=min(mini_,fea_shape)
|
|||
|
offset=log2(k/1000)*1.5
|
|||
|
kpp_all=min(mini_*10/offset,fea_shape)
|
|||
|
kpp_sample=min(mini_/12/offset,fea_shape)
|
|||
|
"""
|
|||
|
assert isinstance(X, torch.Tensor), "input must be torch.Tensor"
|
|||
|
assert X.dtype in [torch.half, torch.float, torch.double], "input must be floating point"
|
|||
|
assert X.ndim == 2, "input must be a 2d tensor with shape: [n_samples, n_features] "
|
|||
|
# print("verbose:%s"%self.verbose)
|
|||
|
|
|||
|
offset = np.power(1.5,np.log(self.n_clusters / 1000))/np.log(2)
|
|||
|
with torch.no_grad():
|
|||
|
batch_size= X.shape[0]
|
|||
|
# print(self.minibatch, int(self.minibatch * 10 / offset), batch_size)
|
|||
|
start_time = time()
|
|||
|
if (self.minibatch*10//offset< batch_size):
|
|||
|
x = X[torch.randint(0, batch_size,[int(self.minibatch*10/offset)])].to(self.device)
|
|||
|
else:
|
|||
|
x = X.to(self.device)
|
|||
|
# print(x.device)
|
|||
|
self.centroids = _kpp(x, self.n_clusters, min(int(self.minibatch/12/offset),batch_size))
|
|||
|
del x
|
|||
|
torch.cuda.empty_cache()
|
|||
|
# self.centroids = self.centroids.to(self.device)
|
|||
|
num_points_in_clusters = torch.ones(self.n_clusters, device=self.device, dtype=X.dtype)#全1
|
|||
|
closest = None#[3098036]#int64
|
|||
|
if(self.minibatch>=batch_size//2 and self.minibatch<batch_size):
|
|||
|
X = X[torch.randint(0, batch_size,[self.minibatch])].to(self.device)
|
|||
|
elif(self.minibatch>=batch_size):
|
|||
|
X=X.to(self.device)
|
|||
|
for i in range(self.max_iter):
|
|||
|
iter_time = time()
|
|||
|
if self.minibatch<batch_size//2:#可用minibatch数太小,每次都得从内存倒腾到显存
|
|||
|
x = X[torch.randint(0, batch_size, [self.minibatch])].to(self.device)
|
|||
|
else:#否则直接全部缓存
|
|||
|
x = X
|
|||
|
|
|||
|
closest = self.max_sim(a=x, b=self.centroids)[1].to(torch.int16)#[3098036]#int64#0~999
|
|||
|
matched_clusters, counts = closest.unique(return_counts=True)#int64#1k
|
|||
|
expanded_closest = closest[None].expand(self.n_clusters, -1)#[1000, 3098036]#int16#0~999
|
|||
|
mask = (expanded_closest==torch.arange(self.n_clusters, device=self.device)[:, None]).to(X.dtype)#==后者是int64*1000
|
|||
|
c_grad = mask @ x / mask.sum(-1)[..., :, None]
|
|||
|
c_grad[c_grad!=c_grad] = 0 # remove NaNs
|
|||
|
error = (c_grad - self.centroids).pow(2).sum()
|
|||
|
if self.minibatch is not None:
|
|||
|
lr = 1/num_points_in_clusters[:,None] * 0.9 + 0.1
|
|||
|
else:
|
|||
|
lr = 1
|
|||
|
matched_clusters=matched_clusters.long()
|
|||
|
num_points_in_clusters[matched_clusters] += counts#IndexError: tensors used as indices must be long, byte or bool tensors
|
|||
|
self.centroids = self.centroids * (1-lr) + c_grad * lr
|
|||
|
if self.verbose >= 2:
|
|||
|
print('iter:', i, 'error:', error.item(), 'time spent:', round(time()-iter_time, 4))
|
|||
|
if error <= self.tol:
|
|||
|
break
|
|||
|
|
|||
|
if self.verbose >= 1:
|
|||
|
print(f'used {i+1} iterations ({round(time()-start_time, 4)}s) to cluster {batch_size} items into {self.n_clusters} clusters')
|
|||
|
return closest
|