113 lines
3.8 KiB
Python
113 lines
3.8 KiB
Python
|
import math
|
||
|
import os
|
||
|
import random
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
import torch.nn.functional as F
|
||
|
import torch.utils.data
|
||
|
import numpy as np
|
||
|
import librosa
|
||
|
import librosa.util as librosa_util
|
||
|
from librosa.util import normalize, pad_center, tiny
|
||
|
from scipy.signal import get_window
|
||
|
from scipy.io.wavfile import read
|
||
|
from librosa.filters import mel as librosa_mel_fn
|
||
|
|
||
|
MAX_WAV_VALUE = 32768.0
|
||
|
|
||
|
|
||
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||
|
"""
|
||
|
PARAMS
|
||
|
------
|
||
|
C: compression factor
|
||
|
"""
|
||
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||
|
|
||
|
|
||
|
def dynamic_range_decompression_torch(x, C=1):
|
||
|
"""
|
||
|
PARAMS
|
||
|
------
|
||
|
C: compression factor used to compress
|
||
|
"""
|
||
|
return torch.exp(x) / C
|
||
|
|
||
|
|
||
|
def spectral_normalize_torch(magnitudes):
|
||
|
output = dynamic_range_compression_torch(magnitudes)
|
||
|
return output
|
||
|
|
||
|
|
||
|
def spectral_de_normalize_torch(magnitudes):
|
||
|
output = dynamic_range_decompression_torch(magnitudes)
|
||
|
return output
|
||
|
|
||
|
|
||
|
mel_basis = {}
|
||
|
hann_window = {}
|
||
|
|
||
|
|
||
|
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||
|
if torch.min(y) < -1.:
|
||
|
print('min value is ', torch.min(y))
|
||
|
if torch.max(y) > 1.:
|
||
|
print('max value is ', torch.max(y))
|
||
|
|
||
|
global hann_window
|
||
|
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||
|
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||
|
if wnsize_dtype_device not in hann_window:
|
||
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||
|
|
||
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||
|
y = y.squeeze(1)
|
||
|
|
||
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||
|
|
||
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||
|
return spec
|
||
|
|
||
|
|
||
|
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||
|
global mel_basis
|
||
|
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
||
|
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||
|
if fmax_dtype_device not in mel_basis:
|
||
|
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
||
|
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||
|
spec = spectral_normalize_torch(spec)
|
||
|
return spec
|
||
|
|
||
|
|
||
|
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||
|
if torch.min(y) < -1.:
|
||
|
print('min value is ', torch.min(y))
|
||
|
if torch.max(y) > 1.:
|
||
|
print('max value is ', torch.max(y))
|
||
|
|
||
|
global mel_basis, hann_window
|
||
|
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||
|
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||
|
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||
|
if fmax_dtype_device not in mel_basis:
|
||
|
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
||
|
if wnsize_dtype_device not in hann_window:
|
||
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||
|
|
||
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||
|
y = y.squeeze(1)
|
||
|
|
||
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||
|
|
||
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||
|
|
||
|
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||
|
spec = spectral_normalize_torch(spec)
|
||
|
|
||
|
return spec
|