# SoftVC VITS Singing Voice Conversion [**English**](./README.md) | [**中文简体**](./README_zh_CN.md) ## 使用规约 1. 本项目是基于学术交流目的建立,仅供交流与学习使用,并非为生产环境准备,请自行解决数据集的授权问题,任何由于使用非授权数据集进行训练造成的问题,需自行承担全部责任和一切后果! 2. 任何发布到视频平台的基于 sovits 制作的视频,都必须要在简介明确指明用于变声器转换的输入源歌声、音频,例如:使用他人发布的视频 / 音频,通过分离的人声作为输入源进行转换的,必须要给出明确的原视频、音乐链接;若使用是自己的人声,或是使用其他歌声合成引擎合成的声音作为输入源进行转换的,也必须在简介加以说明。 3. 由输入源造成的侵权问题需自行承担全部责任和一切后果。使用其他商用歌声合成软件作为输入源时,请确保遵守该软件的使用条例,注意,许多歌声合成引擎使用条例中明确指明不可用于输入源进行转换! 4. 继续使用视为已同意本仓库 README 所述相关条例,本仓库 README 已进行劝导义务,不对后续可能存在问题负责。 5. 如将本仓库代码二次分发,或将由此项目产出的任何结果公开发表 (包括但不限于视频网站投稿),请注明原作者及代码来源 (此仓库)。 6. 如果将此项目用于任何其他企划,请提前联系并告知本仓库作者,十分感谢。 ## update > 更新了4.0-v2模型,全部流程同4.0,相比4.0在部分场景下有一定提升,但也有些情况有退步,具体可移步[4.0-v2分支](https://github.com/svc-develop-team/so-vits-svc/tree/4.0-v2) ## 模型简介 歌声音色转换模型,通过SoftVC内容编码器提取源音频语音特征,与F0同时输入VITS替换原本的文本输入达到歌声转换的效果。同时,更换声码器为 [NSF HiFiGAN](https://github.com/openvpi/DiffSinger/tree/refactor/modules/nsf_hifigan) 解决断音问题 ### 4.0版本更新内容 + 特征输入更换为 [Content Vec](https://github.com/auspicious3000/contentvec) + 采样率统一使用44100hz + 由于更改了hop size等参数以及精简了部分模型结构,推理所需显存占用**大幅降低**,4.0版本44khz显存占用甚至小于3.0版本的32khz + 调整了部分代码结构 + 数据集制作、训练过程和3.0保持一致,但模型完全不通用,数据集也需要全部重新预处理 + 增加了可选项 1:vc模式自动预测音高f0,即转换语音时不需要手动输入变调key,男女声的调能自动转换,但仅限语音转换,该模式转换歌声会跑调 + 增加了可选项 2:通过kmeans聚类方案减小音色泄漏,即使得音色更加像目标音色 ## 预先下载的模型文件 #### **必须项** + contentvec :[checkpoint_best_legacy_500.pt](https://ibm.box.com/s/z1wgl1stco8ffooyatzdwsqn2psd9lrr) + 放在`hubert`目录下 ```shell # contentvec http://obs.cstcloud.cn/share/obs/sankagenkeshi/checkpoint_best_legacy_500.pt # 也可手动下载放在hubert目录 ``` #### **可选项(强烈建议使用)** + 预训练底模文件: `G_0.pth` `D_0.pth` + 放在`logs/44k`目录下 从svc-develop-team(待定)或任何其他地方获取 虽然底模一般不会引起什么版权问题,但还是请注意一下,比如事先询问作者,又或者作者在模型描述中明确写明了可行的用途 ## 数据集准备 仅需要以以下文件结构将数据集放入dataset_raw目录即可 ```shell dataset_raw ├───speaker0 │ ├───xxx1-xxx1.wav │ ├───... │ └───Lxx-0xx8.wav └───speaker1 ├───xx2-0xxx2.wav ├───... └───xxx7-xxx007.wav ``` ## 数据预处理 1. 重采样至 44100hz ```shell python resample.py ``` 2. 自动划分训练集 验证集 测试集 以及自动生成配置文件 ```shell python preprocess_flist_config.py ``` 3. 生成hubert与f0 ```shell python preprocess_hubert_f0.py ``` 执行完以上步骤后 dataset 目录便是预处理完成的数据,可以删除dataset_raw文件夹了 ## 训练 ```shell python train.py -c configs/config.json -m 44k ``` 注:训练时会自动清除老的模型,只保留最新3个模型,如果想防止过拟合需要自己手动备份模型记录点,或修改配置文件keep_ckpts 0为永不清除 ## 推理 使用 [inference_main.py](inference_main.py) 截止此处,4.0使用方法(训练、推理)和3.0完全一致,没有任何变化(推理增加了命令行支持) ```shell # 例 python inference_main.py -m "logs/44k/G_30400.pth" -c "configs/config.json" -n "君の知らない物語-src.wav" -t 0 -s "nen" ``` 必填项部分 + -m, --model_path:模型路径。 + -c, --config_path:配置文件路径。 + -n, --clean_names:wav 文件名列表,放在 raw 文件夹下。 + -t, --trans:音高调整,支持正负(半音)。 + -s, --spk_list:合成目标说话人名称。 可选项部分:见下一节 + -a, --auto_predict_f0:语音转换自动预测音高,转换歌声时不要打开这个会严重跑调。 + -cm, --cluster_model_path:聚类模型路径,如果没有训练聚类则随便填。 + -cr, --cluster_infer_ratio:聚类方案占比,范围 0-1,若没有训练聚类模型则填 0 即可。 ## 可选项 如果前面的效果已经满意,或者没看明白下面在讲啥,那后面的内容都可以忽略,不影响模型使用(这些可选项影响比较小,可能在某些特定数据上有点效果,但大部分情况似乎都感知不太明显) ### 自动f0预测 4.0模型训练过程会训练一个f0预测器,对于语音转换可以开启自动音高预测,如果效果不好也可以使用手动的,但转换歌声时请不要启用此功能!!!会严重跑调!! + 在inference_main中设置auto_predict_f0为true即可 ### 聚类音色泄漏控制 介绍:聚类方案可以减小音色泄漏,使得模型训练出来更像目标的音色(但其实不是特别明显),但是单纯的聚类方案会降低模型的咬字(会口齿不清)(这个很明显),本模型采用了融合的方式, 可以线性控制聚类方案与非聚类方案的占比,也就是可以手动在"像目标音色" 和 "咬字清晰" 之间调整比例,找到合适的折中点。 使用聚类前面的已有步骤不用进行任何的变动,只需要额外训练一个聚类模型,虽然效果比较有限,但训练成本也比较低 + 训练过程: + 使用cpu性能较好的机器训练,据我的经验在腾讯云6核cpu训练每个speaker需要约4分钟即可完成训练 + 执行python cluster/train_cluster.py ,模型的输出会在 logs/44k/kmeans_10000.pt + 推理过程: + inference_main中指定cluster_model_path + inference_main中指定cluster_infer_ratio,0为完全不使用聚类,1为只使用聚类,通常设置0.5即可 ### [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kv-3y2DmZo0uya8pEr1xk7cSB-4e_Pct?usp=sharing) [sovits4_for_colab.ipynb](https://colab.research.google.com/drive/1kv-3y2DmZo0uya8pEr1xk7cSB-4e_Pct?usp=sharing) #### [23/03/16] 不再需要手动下载hubert ## Onnx导出 使用 [onnx_export.py](onnx_export.py) + 新建文件夹:`checkpoints` 并打开 + 在`checkpoints`文件夹中新建一个文件夹作为项目文件夹,文件夹名为你的项目名称,比如`aziplayer` + 将你的模型更名为`model.pth`,配置文件更名为`config.json`,并放置到刚才创建的`aziplayer`文件夹下 + 将 [onnx_export.py](onnx_export.py) 中`path = "NyaruTaffy"` 的 `"NyaruTaffy"` 修改为你的项目名称,`path = "aziplayer"` + 运行 [onnx_export.py](onnx_export.py) + 等待执行完毕,在你的项目文件夹下会生成一个`model.onnx`,即为导出的模型 ### Onnx模型支持的UI + [MoeSS](https://github.com/NaruseMioShirakana/MoeSS) + 我去除了所有的训练用函数和一切复杂的转置,一行都没有保留,因为我认为只有去除了这些东西,才知道你用的是Onnx + 注意:Hubert Onnx模型请使用MoeSS提供的模型,目前无法自行导出(fairseq中Hubert有不少onnx不支持的算子和涉及到常量的东西,在导出时会报错或者导出的模型输入输出shape和结果都有问题) [Hubert4.0](https://huggingface.co/NaruseMioShirakana/MoeSS-SUBModel) ## 一些法律条例参考 #### 《民法典》 ##### 第一千零一十九条 任何组织或者个人不得以丑化、污损,或者利用信息技术手段伪造等方式侵害他人的肖像权。未经肖像权人同意,不得制作、使用、公开肖像权人的肖像,但是法律另有规定的除外。 未经肖像权人同意,肖像作品权利人不得以发表、复制、发行、出租、展览等方式使用或者公开肖像权人的肖像。 对自然人声音的保护,参照适用肖像权保护的有关规定。 ##### 第一千零二十四条 【名誉权】民事主体享有名誉权。任何组织或者个人不得以侮辱、诽谤等方式侵害他人的名誉权。 ##### 第一千零二十七条 【作品侵害名誉权】行为人发表的文学、艺术作品以真人真事或者特定人为描述对象,含有侮辱、诽谤内容,侵害他人名誉权的,受害人有权依法请求该行为人承担民事责任。 行为人发表的文学、艺术作品不以特定人为描述对象,仅其中的情节与该特定人的情况相似的,不承担民事责任。