From e7bbdaa2da3f42b7a869e1056e45add5c7d144d4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=CE=9D=CE=B1=CF=81=CE=BF=CF=85=CF=83=CE=AD=C2=B7=CE=BC?= =?UTF-8?q?=C2=B7=CE=B3=CE=B9=CE=BF=CF=85=CE=BC=CE=B5=CE=BC=CE=AF=C2=B7?= =?UTF-8?q?=CE=A7=CE=B9=CE=BD=CE=B1=CE=BA=CE=AC=CE=BD=CE=BD=CE=B1?= <40709280+NaruseMioShirakana@users.noreply.github.com> Date: Thu, 18 May 2023 15:46:42 +0800 Subject: [PATCH] Add files via upload --- diffusion/onnx_export.py | 225 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 225 insertions(+) create mode 100644 diffusion/onnx_export.py diff --git a/diffusion/onnx_export.py b/diffusion/onnx_export.py new file mode 100644 index 0000000..c18e25f --- /dev/null +++ b/diffusion/onnx_export.py @@ -0,0 +1,225 @@ +from diffusion_onnx import GaussianDiffusion +import os +import yaml +import torch +import torch.nn as nn +import numpy as np +from wavenet import WaveNet +import torch.nn.functional as F +import diffusion + +class DotDict(dict): + def __getattr__(*args): + val = dict.get(*args) + return DotDict(val) if type(val) is dict else val + + __setattr__ = dict.__setitem__ + __delattr__ = dict.__delitem__ + + +def load_model_vocoder( + model_path, + device='cpu'): + config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml') + with open(config_file, "r") as config: + args = yaml.safe_load(config) + args = DotDict(args) + + # load model + model = Unit2Mel( + args.data.encoder_out_channels, + args.model.n_spk, + args.model.use_pitch_aug, + 128, + args.model.n_layers, + args.model.n_chans, + args.model.n_hidden) + + print(' [Loading] ' + model_path) + ckpt = torch.load(model_path, map_location=torch.device(device)) + model.to(device) + model.load_state_dict(ckpt['model']) + model.eval() + return model, args + + +class Unit2Mel(nn.Module): + def __init__( + self, + input_channel, + n_spk, + use_pitch_aug=False, + out_dims=128, + n_layers=20, + n_chans=384, + n_hidden=256): + super().__init__() + self.unit_embed = nn.Linear(input_channel, n_hidden) + self.f0_embed = nn.Linear(1, n_hidden) + self.volume_embed = nn.Linear(1, n_hidden) + if use_pitch_aug: + self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False) + else: + self.aug_shift_embed = None + self.n_spk = n_spk + if n_spk is not None and n_spk > 1: + self.spk_embed = nn.Embedding(n_spk, n_hidden) + + # diffusion + self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden) + self.hidden_size = n_hidden + self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden)) + + + + def forward(self, units, mel2ph, f0, volume, g = None): + + ''' + input: + B x n_frames x n_unit + return: + dict of B x n_frames x feat + ''' + + # decoder_inp = F.pad(units, [0, 0, 1, 0]) + mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]]) + units = torch.gather(units, 1, mel2ph_) # [B, T, H] + + x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1)) + + if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H] + g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1] + g = g * self.speaker_map # [N, S, B, 1, H] + g = torch.sum(g, dim=1) # [N, 1, B, 1, H] + g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N] + x = x.transpose(1, 2) + g + return x + else: + return x.transpose(1, 2) + + + def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None, + gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True): + + ''' + input: + B x n_frames x n_unit + return: + dict of B x n_frames x feat + ''' + x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume) + if self.n_spk is not None and self.n_spk > 1: + if spk_mix_dict is not None: + spk_embed_mix = torch.zeros((1,1,self.hidden_size)) + for k, v in spk_mix_dict.items(): + spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device) + spk_embeddd = self.spk_embed(spk_id_torch) + self.speaker_map[k] = spk_embeddd + spk_embed_mix = spk_embed_mix + v * spk_embeddd + x = x + spk_embed_mix + else: + x = x + self.spk_embed(spk_id - 1) + self.speaker_map = self.speaker_map.unsqueeze(0) + self.speaker_map = self.speaker_map.detach() + return x.transpose(1, 2) + + def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True): + hubert_hidden_size = 768 + n_frames = 100 + hubert = torch.randn((1, n_frames, hubert_hidden_size)) + mel2ph = torch.arange(end=n_frames).unsqueeze(0).long() + f0 = torch.randn((1, n_frames)) + volume = torch.randn((1, n_frames)) + spk_mix = [] + spks = {} + if self.n_spk is not None and self.n_spk > 1: + for i in range(self.n_spk): + spk_mix.append(1.0/float(self.n_spk)) + spks.update({i:1.0/float(self.n_spk)}) + spk_mix = torch.tensor(spk_mix) + spk_mix = spk_mix.repeat(n_frames, 1) + orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks) + outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix) + if export_encoder: + torch.onnx.export( + self, + (hubert, mel2ph, f0, volume, spk_mix), + f"{project_name}_encoder.onnx", + input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"], + output_names=["mel_pred"], + dynamic_axes={ + "hubert": [1], + "f0": [1], + "volume": [1], + "mel2ph": [1] + }, + opset_version=16 + ) + + self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after) + + def ExportOnnx(self, project_name=None): + hubert_hidden_size = 768 + n_frames = 100 + hubert = torch.randn((1, n_frames, hubert_hidden_size)) + mel2ph = torch.arange(end=n_frames).unsqueeze(0).long() + f0 = torch.randn((1, n_frames)) + volume = torch.randn((1, n_frames)) + spk_mix = [] + spks = {} + if self.n_spk is not None and self.n_spk > 1: + for i in range(self.n_spk): + spk_mix.append(1.0/float(self.n_spk)) + spks.update({i:1.0/float(self.n_spk)}) + spk_mix = torch.tensor(spk_mix) + orgouttt = self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks) + outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix) + + torch.onnx.export( + self, + (hubert, mel2ph, f0, volume, spk_mix), + f"{project_name}_encoder.onnx", + input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"], + output_names=["mel_pred"], + dynamic_axes={ + "hubert": [1], + "f0": [1], + "volume": [1], + "mel2ph": [1] + }, + opset_version=16 + ) + + condition = torch.randn(1,self.decoder.n_hidden,n_frames) + noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32) + pndm_speedup = torch.LongTensor([100]) + K_steps = torch.LongTensor([1000]) + self.decoder = torch.jit.script(self.decoder) + self.decoder(condition, noise, pndm_speedup, K_steps) + + torch.onnx.export( + self.decoder, + (condition, noise, pndm_speedup, K_steps), + f"{project_name}_diffusion.onnx", + input_names=["condition", "noise", "pndm_speedup", "K_steps"], + output_names=["mel"], + dynamic_axes={ + "condition": [2], + "noise": [3], + }, + opset_version=16 + ) + + +if __name__ == "__main__": + project_name = "dddsp" + model_path = f'{project_name}/model_500000.pt' + + model, _ = load_model_vocoder(model_path) + + # 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样) + model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True) + + # 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可) + # model.ExportOnnx(project_name) +