diff-svc/training/svc_task.py

483 lines
20 KiB
Python
Raw Normal View History

2023-03-10 11:08:57 +00:00
import os
from multiprocessing.pool import Pool
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.distributed as dist
import torch.distributions
import torch.nn.functional as F
import torch.optim
import torch.utils.data
from tqdm import tqdm
import utils
from modules.commons.ssim import ssim
from modules.diff.diffusion import GaussianDiffusion
from modules.diff.net import DiffNet
from modules.vocoders.nsf_hifigan import NsfHifiGAN, nsf_hifigan
from preprocessing.hubertinfer import HubertEncoder
from preprocessing.process_pipeline import get_pitch_parselmouth
from training.base_task import BaseTask
from utils import audio
from utils.hparams import hparams
from utils.pitch_utils import denorm_f0
from utils.pl_utils import data_loader
from utils.plot import spec_to_figure, f0_to_figure
from utils.svc_utils import SvcDataset
matplotlib.use('Agg')
DIFF_DECODERS = {
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins'])
}
class SvcTask(BaseTask):
def __init__(self):
super(SvcTask, self).__init__()
self.vocoder = NsfHifiGAN()
self.phone_encoder = HubertEncoder(hparams['hubert_path'])
self.saving_result_pool = None
self.saving_results_futures = None
self.stats = {}
self.dataset_cls = SvcDataset
self.mse_loss_fn = torch.nn.MSELoss()
mel_losses = hparams['mel_loss'].split("|")
self.loss_and_lambda = {}
for i, l in enumerate(mel_losses):
if l == '':
continue
if ':' in l:
l, lbd = l.split(":")
lbd = float(lbd)
else:
lbd = 1.0
self.loss_and_lambda[l] = lbd
print("| Mel losses:", self.loss_and_lambda)
def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None,
required_batch_size_multiple=-1, endless=False, batch_by_size=True):
devices_cnt = torch.cuda.device_count()
if devices_cnt == 0:
devices_cnt = 1
if required_batch_size_multiple == -1:
required_batch_size_multiple = devices_cnt
def shuffle_batches(batches):
np.random.shuffle(batches)
return batches
if max_tokens is not None:
max_tokens *= devices_cnt
if max_sentences is not None:
max_sentences *= devices_cnt
indices = dataset.ordered_indices()
if batch_by_size:
batch_sampler = utils.batch_by_size(
indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
)
else:
batch_sampler = []
for i in range(0, len(indices), max_sentences):
batch_sampler.append(indices[i:i + max_sentences])
if shuffle:
batches = shuffle_batches(list(batch_sampler))
if endless:
batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))]
else:
batches = batch_sampler
if endless:
batches = [b for _ in range(1000) for b in batches]
num_workers = dataset.num_workers
if self.trainer.use_ddp:
num_replicas = dist.get_world_size()
rank = dist.get_rank()
batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0]
return torch.utils.data.DataLoader(dataset,
collate_fn=dataset.collater,
batch_sampler=batches,
num_workers=num_workers,
pin_memory=False)
def test_start(self):
self.saving_result_pool = Pool(8)
self.saving_results_futures = []
self.vocoder = nsf_hifigan
def test_end(self, outputs):
self.saving_result_pool.close()
[f.get() for f in tqdm(self.saving_results_futures)]
self.saving_result_pool.join()
return {}
@data_loader
def train_dataloader(self):
train_dataset = self.dataset_cls(hparams['train_set_name'], shuffle=True)
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences,
endless=hparams['endless_ds'])
@data_loader
def val_dataloader(self):
valid_dataset = self.dataset_cls(hparams['valid_set_name'], shuffle=False)
return self.build_dataloader(valid_dataset, False, self.max_eval_tokens, self.max_eval_sentences)
@data_loader
def test_dataloader(self):
test_dataset = self.dataset_cls(hparams['test_set_name'], shuffle=False)
return self.build_dataloader(test_dataset, False, self.max_eval_tokens,
self.max_eval_sentences, batch_by_size=False)
def build_model(self):
self.build_tts_model()
if hparams['load_ckpt'] != '':
self.load_ckpt(hparams['load_ckpt'], strict=True)
utils.print_arch(self.model)
return self.model
def build_tts_model(self):
mel_bins = hparams['audio_num_mel_bins']
self.model = GaussianDiffusion(
phone_encoder=self.phone_encoder,
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams),
timesteps=hparams['timesteps'],
K_step=hparams['K_step'],
loss_type=hparams['diff_loss_type'],
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
)
def build_optimizer(self, model):
self.optimizer = optimizer = torch.optim.AdamW(
filter(lambda p: p.requires_grad, model.parameters()),
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
weight_decay=hparams['weight_decay'])
return optimizer
@staticmethod
def run_model(model, sample, return_output=False, infer=False):
'''
steps:
1. run the full model, calc the main loss
2. calculate loss for dur_predictor, pitch_predictor, energy_predictor
'''
hubert = sample['hubert'] # [B, T_t,H]
target = sample['mels'] # [B, T_s, 80]
mel2ph = sample['mel2ph'] # [B, T_s]
f0 = sample['f0']
energy = sample.get('energy')
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
output = model(hubert, mel2ph=mel2ph, spk_embed_id=spk_embed, ref_mels=target, f0=f0, energy=energy,
infer=infer)
losses = {}
if 'diff_loss' in output:
losses['mel'] = output['diff_loss']
if not return_output:
return losses
else:
return losses, output
def build_scheduler(self, optimizer):
return torch.optim.lr_scheduler.StepLR(optimizer, hparams['decay_steps'], gamma=0.5)
def _training_step(self, sample, batch_idx, _):
log_outputs = self.run_model(self.model, sample)
total_loss = sum([v for v in log_outputs.values() if isinstance(v, torch.Tensor) and v.requires_grad])
log_outputs['batch_size'] = sample['hubert'].size()[0]
log_outputs['lr'] = self.scheduler.get_lr()[0]
return total_loss, log_outputs
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, use_amp, scaler):
if optimizer is None:
return
if use_amp:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad()
if self.scheduler is not None:
self.scheduler.step(self.global_step // hparams['accumulate_grad_batches'])
def validation_step(self, sample, batch_idx):
outputs = {}
hubert = sample['hubert'] # [B, T_t]
energy = sample.get('energy')
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
mel2ph = sample['mel2ph']
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
outputs = utils.tensors_to_scalars(outputs)
if batch_idx < hparams['num_valid_plots']:
model_out = self.model(
hubert, spk_embed_id=spk_embed, mel2ph=mel2ph, f0=sample['f0'], energy=energy, ref_mels=None, infer=True
)
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams)
pred_f0 = model_out.get('f0_denorm')
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0)
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}')
if hparams['use_pitch_embed']:
self.plot_pitch(batch_idx, sample, model_out)
return outputs
def _validation_end(self, outputs):
all_losses_meter = {
'total_loss': utils.AvgrageMeter(),
}
for output in outputs:
n = output['nsamples']
for k, v in output['losses'].items():
if k not in all_losses_meter:
all_losses_meter[k] = utils.AvgrageMeter()
all_losses_meter[k].update(v, n)
all_losses_meter['total_loss'].update(output['total_loss'], n)
return {k: round(v.avg, 4) for k, v in all_losses_meter.items()}
############
# losses
############
def add_mel_loss(self, mel_out, target, losses, postfix='', mel_mix_loss=None):
if mel_mix_loss is None:
for loss_name, lbd in self.loss_and_lambda.items():
if 'l1' == loss_name:
l = self.l1_loss(mel_out, target)
elif 'mse' == loss_name:
raise NotImplementedError
elif 'ssim' == loss_name:
l = self.ssim_loss(mel_out, target)
elif 'gdl' == loss_name:
raise NotImplementedError
losses[f'{loss_name}{postfix}'] = l * lbd
else:
raise NotImplementedError
def l1_loss(self, decoder_output, target):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
l1_loss = F.l1_loss(decoder_output, target, reduction='none')
weights = self.weights_nonzero_speech(target)
l1_loss = (l1_loss * weights).sum() / weights.sum()
return l1_loss
def ssim_loss(self, decoder_output, target, bias=6.0):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
assert decoder_output.shape == target.shape
weights = self.weights_nonzero_speech(target)
decoder_output = decoder_output[:, None] + bias
target = target[:, None] + bias
ssim_loss = 1 - ssim(decoder_output, target, size_average=False)
ssim_loss = (ssim_loss * weights).sum() / weights.sum()
return ssim_loss
def add_pitch_loss(self, output, sample, losses):
if hparams['pitch_type'] == 'ph':
nonpadding = (sample['txt_tokens'] != 0).float()
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss
losses['f0'] = (pitch_loss_fn(output['pitch_pred'][:, :, 0], sample['f0'],
reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_f0']
return
mel2ph = sample['mel2ph'] # [B, T_s]
f0 = sample['f0']
uv = sample['uv']
nonpadding = (mel2ph != 0).float()
if hparams['pitch_type'] == 'frame':
self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding)
@staticmethod
def add_f0_loss(p_pred, f0, uv, losses, nonpadding):
assert p_pred[..., 0].shape == f0.shape
if hparams['use_uv']:
assert p_pred[..., 1].shape == uv.shape
losses['uv'] = (F.binary_cross_entropy_with_logits(
p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_uv']
nonpadding = nonpadding * (uv == 0).float()
f0_pred = p_pred[:, :, 0]
if hparams['pitch_loss'] in ['l1', 'l2']:
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss
losses['f0'] = (pitch_loss_fn(f0_pred, f0, reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_f0']
elif hparams['pitch_loss'] == 'ssim':
return NotImplementedError
@staticmethod
def add_energy_loss(energy_pred, energy, losses):
nonpadding = (energy != 0).float()
loss = (F.mse_loss(energy_pred, energy, reduction='none') * nonpadding).sum() / nonpadding.sum()
loss = loss * hparams['lambda_energy']
losses['e'] = loss
############
# validation plots
############
def plot_mel(self, batch_idx, spec, spec_out, name=None):
spec_cat = torch.cat([spec, spec_out], -1)
name = f'mel_{batch_idx}' if name is None else name
vmin = hparams['mel_vmin']
vmax = hparams['mel_vmax']
self.logger.experiment.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step)
def plot_pitch(self, batch_idx, sample, model_out):
f0 = sample['f0']
if hparams['pitch_type'] == 'ph':
mel2ph = sample['mel2ph']
f0 = self.expand_f0_ph(f0, mel2ph)
f0_pred = self.expand_f0_ph(model_out['pitch_pred'][:, :, 0], mel2ph)
self.logger.experiment.add_figure(
f'f0_{batch_idx}', f0_to_figure(f0[0], None, f0_pred[0]), self.global_step)
return
f0 = denorm_f0(f0, sample['uv'], hparams)
if hparams['pitch_type'] == 'frame':
pitch_pred = denorm_f0(model_out['pitch_pred'][:, :, 0], sample['uv'], hparams)
self.logger.experiment.add_figure(
f'f0_{batch_idx}', f0_to_figure(f0[0], None, pitch_pred[0]), self.global_step)
def plot_wav(self, batch_idx, gt_wav, wav_out, is_mel=False, gt_f0=None, f0=None, name=None):
gt_wav = gt_wav[0].cpu().numpy()
wav_out = wav_out[0].cpu().numpy()
gt_f0 = gt_f0[0].cpu().numpy()
f0 = f0[0].cpu().numpy()
if is_mel:
gt_wav = self.vocoder.spec2wav(gt_wav, f0=gt_f0)
wav_out = self.vocoder.spec2wav(wav_out, f0=f0)
self.logger.experiment.add_audio(f'gt_{batch_idx}', gt_wav, sample_rate=hparams['audio_sample_rate'],
global_step=self.global_step)
self.logger.experiment.add_audio(f'wav_{batch_idx}', wav_out, sample_rate=hparams['audio_sample_rate'],
global_step=self.global_step)
############
# infer
############
def test_step(self, sample, batch_idx):
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
hubert = sample['hubert']
ref_mels = None
mel2ph = sample['mel2ph']
f0 = sample['f0']
outputs = self.model(hubert, spk_embed_id=spk_embed, mel2ph=mel2ph, f0=f0, ref_mels=ref_mels, infer=True)
sample['outputs'] = outputs['mel_out']
sample['mel2ph_pred'] = outputs['mel2ph']
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams)
sample['f0_pred'] = outputs.get('f0_denorm')
return self.after_infer(sample)
def after_infer(self, predictions):
if self.saving_result_pool is None and not hparams['profile_infer']:
self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16))
self.saving_results_futures = []
predictions = utils.unpack_dict_to_list(predictions)
t = tqdm(predictions)
for num_predictions, prediction in enumerate(t):
for k, v in prediction.items():
if type(v) is torch.Tensor:
prediction[k] = v.cpu().numpy()
item_name = prediction.get('item_name')
# remove paddings
mel_gt = prediction["mels"]
mel_gt_mask = np.abs(mel_gt).sum(-1) > 0
mel_gt = mel_gt[mel_gt_mask]
mel_pred = prediction["outputs"]
mel_pred_mask = np.abs(mel_pred).sum(-1) > 0
mel_pred = mel_pred[mel_pred_mask]
mel_gt = np.clip(mel_gt, hparams['mel_vmin'], hparams['mel_vmax'])
mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax'])
f0_gt = prediction.get("f0")
f0_pred = f0_gt
if f0_pred is not None:
f0_gt = f0_gt[mel_gt_mask]
if len(f0_pred) > len(mel_pred_mask):
f0_pred = f0_pred[:len(mel_pred_mask)]
f0_pred = f0_pred[mel_pred_mask]
gen_dir = os.path.join(hparams['work_dir'],
f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
if not hparams['profile_infer']:
os.makedirs(gen_dir, exist_ok=True)
os.makedirs(f'{gen_dir}/wavs', exist_ok=True)
os.makedirs(f'{gen_dir}/plot', exist_ok=True)
os.makedirs(os.path.join(hparams['work_dir'], 'P_mels_npy'), exist_ok=True)
os.makedirs(os.path.join(hparams['work_dir'], 'G_mels_npy'), exist_ok=True)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_pred, mel_pred, 'P', item_name, gen_dir]))
if mel_gt is not None and hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_gt, mel_gt, 'G', item_name, gen_dir]))
if hparams['save_f0']:
import matplotlib.pyplot as plt
f0_pred_ = f0_pred
f0_gt_, _ = get_pitch_parselmouth(wav_gt, mel_gt, hparams)
fig = plt.figure()
plt.plot(f0_pred_, label=r'$f0_P$')
plt.plot(f0_gt_, label=r'$f0_G$')
plt.legend()
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png')
plt.close(fig)
t.set_description(
f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
else:
if 'gen_wav_time' not in self.stats:
self.stats['gen_wav_time'] = 0
self.stats['gen_wav_time'] += len(wav_pred) / hparams['audio_sample_rate']
print('gen_wav_time: ', self.stats['gen_wav_time'])
return {}
@staticmethod
def save_result(wav_out, mel, prefix, item_name, gen_dir):
item_name = item_name.replace('/', '-')
base_fn = f'[{item_name}][{prefix}]'
base_fn += ('-' + hparams['exp_name'])
np.save(os.path.join(hparams['work_dir'], f'{prefix}_mels_npy', item_name), mel)
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', 24000, # hparams['audio_sample_rate'],
norm=hparams['out_wav_norm'])
fig = plt.figure(figsize=(14, 10))
spec_vmin = hparams['mel_vmin']
spec_vmax = hparams['mel_vmax']
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax)
fig.colorbar(heatmap)
f0, _ = get_pitch_parselmouth(wav_out, mel, hparams)
f0 = (f0 - 100) / (800 - 100) * 80 * (f0 > 0)
plt.plot(f0, c='white', linewidth=1, alpha=0.6)
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png', dpi=1000)
plt.close(fig)
##############
# utils
##############
@staticmethod
def expand_f0_ph(f0, mel2ph):
f0 = denorm_f0(f0, None, hparams)
f0 = F.pad(f0, [1, 0])
f0 = torch.gather(f0, 1, mel2ph) # [B, T_mel]
return f0
@staticmethod
def weights_nonzero_speech(target):
# target : B x T x mel
# Assign weight 1.0 to all labels except for padding (id=0).
dim = target.size(-1)
return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim)