Dress/ngsw-worker.js

2645 lines
131 KiB
JavaScript

(function () {
'use strict';
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
/**
* Adapts the service worker to its runtime environment.
*
* Mostly, this is used to mock out identifiers which are otherwise read
* from the global scope.
*/
class Adapter {
/**
* Wrapper around the `Request` constructor.
*/
newRequest(input, init) {
return new Request(input, init);
}
/**
* Wrapper around the `Response` constructor.
*/
newResponse(body, init) { return new Response(body, init); }
/**
* Wrapper around the `Headers` constructor.
*/
newHeaders(headers) { return new Headers(headers); }
/**
* Test if a given object is an instance of `Client`.
*/
isClient(source) { return (source instanceof Client); }
/**
* Read the current UNIX time in milliseconds.
*/
get time() { return Date.now(); }
/**
* Extract the pathname of a URL.
*/
parseUrl(url, relativeTo) {
const parsed = new URL(url, relativeTo);
return { origin: parsed.origin, path: parsed.pathname };
}
/**
* Wait for a given amount of time before completing a Promise.
*/
timeout(ms) {
return new Promise(resolve => { setTimeout(() => resolve(), ms); });
}
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
/**
* An error returned in rejected promises if the given key is not found in the table.
*/
class NotFound {
constructor(table, key) {
this.table = table;
this.key = key;
}
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
/**
* An implementation of a `Database` that uses the `CacheStorage` API to serialize
* state within mock `Response` objects.
*/
class CacheDatabase {
constructor(scope, adapter) {
this.scope = scope;
this.adapter = adapter;
this.tables = new Map();
}
'delete'(name) {
if (this.tables.has(name)) {
this.tables.delete(name);
}
return this.scope.caches.delete(`ngsw:db:${name}`);
}
list() {
return this.scope.caches.keys().then(keys => keys.filter(key => key.startsWith('ngsw:db:')));
}
open(name) {
if (!this.tables.has(name)) {
const table = this.scope.caches.open(`ngsw:db:${name}`)
.then(cache => new CacheTable(name, cache, this.adapter));
this.tables.set(name, table);
}
return this.tables.get(name);
}
}
/**
* A `Table` backed by a `Cache`.
*/
class CacheTable {
constructor(table, cache, adapter) {
this.table = table;
this.cache = cache;
this.adapter = adapter;
}
request(key) { return this.adapter.newRequest('/' + key); }
'delete'(key) { return this.cache.delete(this.request(key)); }
keys() {
return this.cache.keys().then(requests => requests.map(req => req.url.substr(1)));
}
read(key) {
return this.cache.match(this.request(key)).then(res => {
if (res === undefined) {
return Promise.reject(new NotFound(this.table, key));
}
return res.json();
});
}
write(key, value) {
return this.cache.put(this.request(key), this.adapter.newResponse(JSON.stringify(value)));
}
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
var UpdateCacheStatus;
(function (UpdateCacheStatus) {
UpdateCacheStatus[UpdateCacheStatus["NOT_CACHED"] = 0] = "NOT_CACHED";
UpdateCacheStatus[UpdateCacheStatus["CACHED_BUT_UNUSED"] = 1] = "CACHED_BUT_UNUSED";
UpdateCacheStatus[UpdateCacheStatus["CACHED"] = 2] = "CACHED";
})(UpdateCacheStatus || (UpdateCacheStatus = {}));
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
class SwCriticalError extends Error {
constructor() {
super(...arguments);
this.isCritical = true;
}
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
/**
* Compute the SHA1 of the given string
*
* see http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
*
* WARNING: this function has not been designed not tested with security in mind.
* DO NOT USE IT IN A SECURITY SENSITIVE CONTEXT.
*
* Borrowed from @angular/compiler/src/i18n/digest.ts
*/
function sha1(str) {
const utf8 = str;
const words32 = stringToWords32(utf8, Endian.Big);
return _sha1(words32, utf8.length * 8);
}
function sha1Binary(buffer) {
const words32 = arrayBufferToWords32(buffer, Endian.Big);
return _sha1(words32, buffer.byteLength * 8);
}
function _sha1(words32, len) {
const w = new Array(80);
let [a, b, c, d, e] = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0];
words32[len >> 5] |= 0x80 << (24 - len % 32);
words32[((len + 64 >> 9) << 4) + 15] = len;
for (let i = 0; i < words32.length; i += 16) {
const [h0, h1, h2, h3, h4] = [a, b, c, d, e];
for (let j = 0; j < 80; j++) {
if (j < 16) {
w[j] = words32[i + j];
}
else {
w[j] = rol32(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1);
}
const [f, k] = fk(j, b, c, d);
const temp = [rol32(a, 5), f, e, k, w[j]].reduce(add32);
[e, d, c, b, a] = [d, c, rol32(b, 30), a, temp];
}
[a, b, c, d, e] = [add32(a, h0), add32(b, h1), add32(c, h2), add32(d, h3), add32(e, h4)];
}
return byteStringToHexString(words32ToByteString([a, b, c, d, e]));
}
function add32(a, b) {
return add32to64(a, b)[1];
}
function add32to64(a, b) {
const low = (a & 0xffff) + (b & 0xffff);
const high = (a >>> 16) + (b >>> 16) + (low >>> 16);
return [high >>> 16, (high << 16) | (low & 0xffff)];
}
// Rotate a 32b number left `count` position
function rol32(a, count) {
return (a << count) | (a >>> (32 - count));
}
var Endian;
(function (Endian) {
Endian[Endian["Little"] = 0] = "Little";
Endian[Endian["Big"] = 1] = "Big";
})(Endian || (Endian = {}));
function fk(index, b, c, d) {
if (index < 20) {
return [(b & c) | (~b & d), 0x5a827999];
}
if (index < 40) {
return [b ^ c ^ d, 0x6ed9eba1];
}
if (index < 60) {
return [(b & c) | (b & d) | (c & d), 0x8f1bbcdc];
}
return [b ^ c ^ d, 0xca62c1d6];
}
function stringToWords32(str, endian) {
const words32 = Array((str.length + 3) >>> 2);
for (let i = 0; i < words32.length; i++) {
words32[i] = wordAt(str, i * 4, endian);
}
return words32;
}
function arrayBufferToWords32(buffer, endian) {
const words32 = Array((buffer.byteLength + 3) >>> 2);
const view = new Uint8Array(buffer);
for (let i = 0; i < words32.length; i++) {
words32[i] = wordAt(view, i * 4, endian);
}
return words32;
}
function byteAt(str, index) {
if (typeof str === 'string') {
return index >= str.length ? 0 : str.charCodeAt(index) & 0xff;
}
else {
return index >= str.byteLength ? 0 : str[index] & 0xff;
}
}
function wordAt(str, index, endian) {
let word = 0;
if (endian === Endian.Big) {
for (let i = 0; i < 4; i++) {
word += byteAt(str, index + i) << (24 - 8 * i);
}
}
else {
for (let i = 0; i < 4; i++) {
word += byteAt(str, index + i) << 8 * i;
}
}
return word;
}
function words32ToByteString(words32) {
return words32.reduce((str, word) => str + word32ToByteString(word), '');
}
function word32ToByteString(word) {
let str = '';
for (let i = 0; i < 4; i++) {
str += String.fromCharCode((word >>> 8 * (3 - i)) & 0xff);
}
return str;
}
function byteStringToHexString(str) {
let hex = '';
for (let i = 0; i < str.length; i++) {
const b = byteAt(str, i);
hex += (b >>> 4).toString(16) + (b & 0x0f).toString(16);
}
return hex.toLowerCase();
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
var __awaiter = (undefined && undefined.__awaiter) || function (thisArg, _arguments, P, generator) {
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
/**
* A group of assets that are cached in a `Cache` and managed by a given policy.
*
* Concrete classes derive from this base and specify the exact caching policy.
*/
class AssetGroup {
constructor(scope, adapter, idle, config, hashes, db, prefix) {
this.scope = scope;
this.adapter = adapter;
this.idle = idle;
this.config = config;
this.hashes = hashes;
this.db = db;
this.prefix = prefix;
/**
* A deduplication cache, to make sure the SW never makes two network requests
* for the same resource at once. Managed by `fetchAndCacheOnce`.
*/
this.inFlightRequests = new Map();
/**
* Regular expression patterns.
*/
this.patterns = [];
this.name = config.name;
// Patterns in the config are regular expressions disguised as strings. Breathe life into them.
this.patterns = this.config.patterns.map(pattern => new RegExp(pattern));
// This is the primary cache, which holds all of the cached requests for this group. If a
// resource
// isn't in this cache, it hasn't been fetched yet.
this.cache = this.scope.caches.open(`${this.prefix}:${this.config.name}:cache`);
// This is the metadata table, which holds specific information for each cached URL, such as
// the timestamp of when it was added to the cache.
this.metadata = this.db.open(`${this.prefix}:${this.config.name}:meta`);
// Determine the origin from the registration scope. This is used to differentiate between
// relative and absolute URLs.
this.origin =
this.adapter.parseUrl(this.scope.registration.scope, this.scope.registration.scope).origin;
}
cacheStatus(url) {
return __awaiter(this, void 0, void 0, function* () {
const cache = yield this.cache;
const meta = yield this.metadata;
const res = yield cache.match(this.adapter.newRequest(url));
if (res === undefined) {
return UpdateCacheStatus.NOT_CACHED;
}
try {
const data = yield meta.read(url);
if (!data.used) {
return UpdateCacheStatus.CACHED_BUT_UNUSED;
}
}
catch (_) {
// Error on the side of safety and assume cached.
}
return UpdateCacheStatus.CACHED;
});
}
/**
* Clean up all the cached data for this group.
*/
cleanup() {
return __awaiter(this, void 0, void 0, function* () {
yield this.scope.caches.delete(`${this.prefix}:${this.config.name}:cache`);
yield this.db.delete(`${this.prefix}:${this.config.name}:meta`);
});
}
/**
* Process a request for a given resource and return it, or return null if it's not available.
*/
handleFetch(req, ctx) {
return __awaiter(this, void 0, void 0, function* () {
const url = this.getConfigUrl(req.url);
// Either the request matches one of the known resource URLs, one of the patterns for
// dynamically matched URLs, or neither. Determine which is the case for this request in
// order to decide how to handle it.
if (this.config.urls.indexOf(url) !== -1 || this.patterns.some(pattern => pattern.test(url))) {
// This URL matches a known resource. Either it's been cached already or it's missing, in
// which case it needs to be loaded from the network.
// Open the cache to check whether this resource is present.
const cache = yield this.cache;
// Look for a cached response. If one exists, it can be used to resolve the fetch
// operation.
const cachedResponse = yield cache.match(req);
if (cachedResponse !== undefined) {
// A response has already been cached (which presumably matches the hash for this
// resource). Check whether it's safe to serve this resource from cache.
if (this.hashes.has(url)) {
// This resource has a hash, and thus is versioned by the manifest. It's safe to return
// the response.
return cachedResponse;
}
else {
// This resource has no hash, and yet exists in the cache. Check how old this request is
// to make sure it's still usable.
if (yield this.needToRevalidate(req, cachedResponse)) {
this.idle.schedule(`revalidate(${this.prefix}, ${this.config.name}): ${req.url}`, () => __awaiter(this, void 0, void 0, function* () { yield this.fetchAndCacheOnce(req); }));
}
// In either case (revalidation or not), the cached response must be good.
return cachedResponse;
}
}
// No already-cached response exists, so attempt a fetch/cache operation. The original request
// may specify things like credential inclusion, but for assets these are not honored in order
// to avoid issues with opaque responses. The SW requests the data itself.
const res = yield this.fetchAndCacheOnce(this.adapter.newRequest(req.url));
// If this is successful, the response needs to be cloned as it might be used to respond to
// multiple fetch operations at the same time.
return res.clone();
}
else {
return null;
}
});
}
getConfigUrl(url) {
// If the URL is relative to the SW's own origin, then only consider the path relative to
// the domain root. Determine this by checking the URL's origin against the SW's.
const parsed = this.adapter.parseUrl(url, this.scope.registration.scope);
if (parsed.origin === this.origin) {
// The URL is relative to the SW's origin domain.
return parsed.path;
}
else {
return url;
}
}
/**
* Some resources are cached without a hash, meaning that their expiration is controlled
* by HTTP caching headers. Check whether the given request/response pair is still valid
* per the caching headers.
*/
needToRevalidate(req, res) {
return __awaiter(this, void 0, void 0, function* () {
// Three different strategies apply here:
// 1) The request has a Cache-Control header, and thus expiration needs to be based on its age.
// 2) The request has an Expires header, and expiration is based on the current timestamp.
// 3) The request has no applicable caching headers, and must be revalidated.
if (res.headers.has('Cache-Control')) {
// Figure out if there is a max-age directive in the Cache-Control header.
const cacheControl = res.headers.get('Cache-Control');
const cacheDirectives = cacheControl
// Directives are comma-separated within the Cache-Control header value.
.split(',')
// Make sure each directive doesn't have extraneous whitespace.
.map(v => v.trim())
// Some directives have values (like maxage and s-maxage)
.map(v => v.split('='));
// Lowercase all the directive names.
cacheDirectives.forEach(v => v[0] = v[0].toLowerCase());
// Find the max-age directive, if one exists.
const cacheAge = cacheDirectives.filter(v => v[0] === 'max-age').map(v => v[1])[0];
if (cacheAge.length === 0) {
// No usable TTL defined. Must assume that the response is stale.
return true;
}
try {
const maxAge = 1000 * parseInt(cacheAge);
// Determine the origin time of this request. If the SW has metadata on the request (which
// it
// should), it will have the time the request was added to the cache. If it doesn't for some
// reason, the request may have a Date header which will serve the same purpose.
let ts;
try {
// Check the metadata table. If a timestamp is there, use it.
const metaTable = yield this.metadata;
ts = (yield metaTable.read(req.url)).ts;
}
catch (e) {
// Otherwise, look for a Date header.
const date = res.headers.get('Date');
if (date === null) {
// Unable to determine when this response was created. Assume that it's stale, and
// revalidate it.
return true;
}
ts = Date.parse(date);
}
const age = this.adapter.time - ts;
return age < 0 || age > maxAge;
}
catch (e) {
// Assume stale.
return true;
}
}
else if (res.headers.has('Expires')) {
// Determine if the expiration time has passed.
const expiresStr = res.headers.get('Expires');
try {
// The request needs to be revalidated if the current time is later than the expiration
// time, if it parses correctly.
return this.adapter.time > Date.parse(expiresStr);
}
catch (e) {
// The expiration date failed to parse, so revalidate as a precaution.
return true;
}
}
else {
// No way to evaluate staleness, so assume the response is already stale.
return true;
}
});
}
/**
* Fetch the complete state of a cached resource, or return null if it's not found.
*/
fetchFromCacheOnly(url) {
return __awaiter(this, void 0, void 0, function* () {
const cache = yield this.cache;
const metaTable = yield this.metadata;
// Lookup the response in the cache.
const response = yield cache.match(this.adapter.newRequest(url));
if (response === undefined) {
// It's not found, return null.
return null;
}
// Next, lookup the cached metadata.
let metadata = undefined;
try {
metadata = yield metaTable.read(url);
}
catch (e) {
// Do nothing, not found. This shouldn't happen, but it can be handled.
}
// Return both the response and any available metadata.
return { response, metadata };
});
}
/**
* Lookup all resources currently stored in the cache which have no associated hash.
*/
unhashedResources() {
return __awaiter(this, void 0, void 0, function* () {
const cache = yield this.cache;
// Start with the set of all cached URLs.
return (yield cache.keys())
.map(request => request.url)
// Exclude the URLs which have hashes.
.filter(url => !this.hashes.has(url));
});
}
/**
* Fetch the given resource from the network, and cache it if able.
*/
fetchAndCacheOnce(req, used = true) {
return __awaiter(this, void 0, void 0, function* () {
// The `inFlightRequests` map holds information about which caching operations are currently
// underway for known resources. If this request appears there, another "thread" is already
// in the process of caching it, and this work should not be duplicated.
if (this.inFlightRequests.has(req.url)) {
// There is a caching operation already in progress for this request. Wait for it to
// complete, and hopefully it will have yielded a useful response.
return this.inFlightRequests.get(req.url);
}
// No other caching operation is being attempted for this resource, so it will be owned here.
// Go to the network and get the correct version.
const fetchOp = this.fetchFromNetwork(req);
// Save this operation in `inFlightRequests` so any other "thread" attempting to cache it
// will block on this chain instead of duplicating effort.
this.inFlightRequests.set(req.url, fetchOp);
// Make sure this attempt is cleaned up properly on failure.
try {
// Wait for a response. If this fails, the request will remain in `inFlightRequests`
// indefinitely.
const res = yield fetchOp;
// It's very important that only successful responses are cached. Unsuccessful responses
// should never be cached as this can completely break applications.
if (!res.ok) {
throw new Error(`Response not Ok (fetchAndCacheOnce): request for ${req.url} returned response ${res.status} ${res.statusText}`);
}
// This response is safe to cache (as long as it's cloned). Wait until the cache operation
// is complete.
const cache = yield this.scope.caches.open(`${this.prefix}:${this.config.name}:cache`);
yield cache.put(req, res.clone());
// If the request is not hashed, update its metadata, especially the timestamp. This is needed
// for future determination of whether this cached response is stale or not.
if (!this.hashes.has(req.url)) {
// Metadata is tracked for requests that are unhashed.
const meta = { ts: this.adapter.time, used };
const metaTable = yield this.metadata;
yield metaTable.write(req.url, meta);
}
return res;
}
finally {
// Finally, it can be removed from `inFlightRequests`. This might result in a double-remove
// if some other chain was already making this request too, but that won't hurt anything.
this.inFlightRequests.delete(req.url);
}
});
}
fetchFromNetwork(req, redirectLimit = 3) {
return __awaiter(this, void 0, void 0, function* () {
// Make a cache-busted request for the resource.
const res = yield this.cacheBustedFetchFromNetwork(req);
// Check for redirected responses, and follow the redirects.
if (res['redirected'] && !!res.url) {
// If the redirect limit is exhausted, fail with an error.
if (redirectLimit === 0) {
throw new SwCriticalError(`Response hit redirect limit (fetchFromNetwork): request redirected too many times, next is ${res.url}`);
}
// Unwrap the redirect directly.
return this.fetchFromNetwork(this.adapter.newRequest(res.url), redirectLimit - 1);
}
return res;
});
}
/**
* Load a particular asset from the network, accounting for hash validation.
*/
cacheBustedFetchFromNetwork(req) {
return __awaiter(this, void 0, void 0, function* () {
const url = this.getConfigUrl(req.url);
// If a hash is available for this resource, then compare the fetched version with the
// canonical hash. Otherwise, the network version will have to be trusted.
if (this.hashes.has(url)) {
// It turns out this resource does have a hash. Look it up. Unless the fetched version
// matches this hash, it's invalid and the whole manifest may need to be thrown out.
const canonicalHash = this.hashes.get(url);
// Ideally, the resource would be requested with cache-busting to guarantee the SW gets
// the freshest version. However, doing this would eliminate any chance of the response
// being in the HTTP cache. Given that the browser has recently actively loaded the page,
// it's likely that many of the responses the SW needs to cache are in the HTTP cache and
// are fresh enough to use. In the future, this could be done by setting cacheMode to
// *only* check the browser cache for a cached version of the resource, when cacheMode is
// fully supported. For now, the resource is fetched directly, without cache-busting, and
// if the hash test fails a cache-busted request is tried before concluding that the
// resource isn't correct. This gives the benefit of acceleration via the HTTP cache
// without the risk of stale data, at the expense of a duplicate request in the event of
// a stale response.
// Fetch the resource from the network (possibly hitting the HTTP cache).
const networkResult = yield this.safeFetch(req);
// Decide whether a cache-busted request is necessary. It might be for two independent
// reasons: either the non-cache-busted request failed (hopefully transiently) or if the
// hash of the content retrieved does not match the canonical hash from the manifest. It's
// only valid to access the content of the first response if the request was successful.
let makeCacheBustedRequest = networkResult.ok;
if (makeCacheBustedRequest) {
// The request was successful. A cache-busted request is only necessary if the hashes
// don't match. Compare them, making sure to clone the response so it can be used later
// if it proves to be valid.
const fetchedHash = sha1Binary(yield networkResult.clone().arrayBuffer());
makeCacheBustedRequest = (fetchedHash !== canonicalHash);
}
// Make a cache busted request to the network, if necessary.
if (makeCacheBustedRequest) {
// Hash failure, the version that was retrieved under the default URL did not have the
// hash expected. This could be because the HTTP cache got in the way and returned stale
// data, or because the version on the server really doesn't match. A cache-busting
// request will differentiate these two situations.
// TODO: handle case where the URL has parameters already (unlikely for assets).
const cacheBustReq = this.adapter.newRequest(this.cacheBust(req.url));
const cacheBustedResult = yield this.safeFetch(cacheBustReq);
// If the response was unsuccessful, there's nothing more that can be done.
if (!cacheBustedResult.ok) {
throw new SwCriticalError(`Response not Ok (cacheBustedFetchFromNetwork): cache busted request for ${req.url} returned response ${cacheBustedResult.status} ${cacheBustedResult.statusText}`);
}
// Hash the contents.
const cacheBustedHash = sha1Binary(yield cacheBustedResult.clone().arrayBuffer());
// If the cache-busted version doesn't match, then the manifest is not an accurate
// representation of the server's current set of files, and the SW should give up.
if (canonicalHash !== cacheBustedHash) {
throw new SwCriticalError(`Hash mismatch (cacheBustedFetchFromNetwork): ${req.url}: expected ${canonicalHash}, got ${cacheBustedHash} (after cache busting)`);
}
// If it does match, then use the cache-busted result.
return cacheBustedResult;
}
// Excellent, the version from the network matched on the first try, with no need for
// cache-busting. Use it.
return networkResult;
}
else {
// This URL doesn't exist in our hash database, so it must be requested directly.
return this.safeFetch(req);
}
});
}
/**
* Possibly update a resource, if it's expired and needs to be updated. A no-op otherwise.
*/
maybeUpdate(updateFrom, req, cache) {
return __awaiter(this, void 0, void 0, function* () {
const url = this.getConfigUrl(req.url);
const meta = yield this.metadata;
// Check if this resource is hashed and already exists in the cache of a prior version.
if (this.hashes.has(url)) {
const hash = this.hashes.get(url);
// Check the caches of prior versions, using the hash to ensure the correct version of
// the resource is loaded.
const res = yield updateFrom.lookupResourceWithHash(url, hash);
// If a previously cached version was available, copy it over to this cache.
if (res !== null) {
// Copy to this cache.
yield cache.put(req, res);
yield meta.write(req.url, { ts: this.adapter.time, used: false });
// No need to do anything further with this resource, it's now cached properly.
return true;
}
}
// No up-to-date version of this resource could be found.
return false;
});
}
/**
* Construct a cache-busting URL for a given URL.
*/
cacheBust(url) {
return url + (url.indexOf('?') === -1 ? '?' : '&') + 'ngsw-cache-bust=' + Math.random();
}
safeFetch(req) {
return __awaiter(this, void 0, void 0, function* () {
try {
return yield this.scope.fetch(req);
}
catch (err) {
return this.adapter.newResponse('', {
status: 504,
statusText: 'Gateway Timeout',
});
}
});
}
}
/**
* An `AssetGroup` that prefetches all of its resources during initialization.
*/
class PrefetchAssetGroup extends AssetGroup {
initializeFully(updateFrom) {
return __awaiter(this, void 0, void 0, function* () {
// Open the cache which actually holds requests.
const cache = yield this.cache;
// Cache all known resources serially. As this reduce proceeds, each Promise waits
// on the last before starting the fetch/cache operation for the next request. Any
// errors cause fall-through to the final Promise which rejects.
yield this.config.urls.reduce((previous, url) => __awaiter(this, void 0, void 0, function* () {
// Wait on all previous operations to complete.
yield previous;
// Construct the Request for this url.
const req = this.adapter.newRequest(url);
// First, check the cache to see if there is already a copy of this resource.
const alreadyCached = (yield cache.match(req)) !== undefined;
// If the resource is in the cache already, it can be skipped.
if (alreadyCached) {
return;
}
// If an update source is available.
if (updateFrom !== undefined && (yield this.maybeUpdate(updateFrom, req, cache))) {
return;
}
// Otherwise, go to the network and hopefully cache the response (if successful).
yield this.fetchAndCacheOnce(req, false);
}), Promise.resolve());
// Handle updating of unknown (unhashed) resources. This is only possible if there's
// a source to update from.
if (updateFrom !== undefined) {
const metaTable = yield this.metadata;
// Select all of the previously cached resources. These are cached unhashed resources
// from previous versions of the app, in any asset group.
yield (yield updateFrom.previouslyCachedResources())
// First, narrow down the set of resources to those which are handled by this group.
// Either it's a known URL, or it matches a given pattern.
.filter(url => this.config.urls.some(cacheUrl => cacheUrl === url) ||
this.patterns.some(pattern => pattern.test(url)))
// Finally, process each resource in turn.
.reduce((previous, url) => __awaiter(this, void 0, void 0, function* () {
yield previous;
const req = this.adapter.newRequest(url);
// It's possible that the resource in question is already cached. If so,
// continue to the next one.
const alreadyCached = ((yield cache.match(req)) !== undefined);
if (alreadyCached) {
return;
}
// Get the most recent old version of the resource.
const res = yield updateFrom.lookupResourceWithoutHash(url);
if (res === null || res.metadata === undefined) {
// Unexpected, but not harmful.
return;
}
// Write it into the cache. It may already be expired, but it can still serve
// traffic until it's updated (stale-while-revalidate approach).
yield cache.put(req, res.response);
yield metaTable.write(url, Object.assign({}, res.metadata, { used: false }));
}), Promise.resolve());
}
});
}
}
class LazyAssetGroup extends AssetGroup {
initializeFully(updateFrom) {
return __awaiter(this, void 0, void 0, function* () {
// No action necessary if no update source is available - resources managed in this group
// are all lazily loaded, so there's nothing to initialize.
if (updateFrom === undefined) {
return;
}
// Open the cache which actually holds requests.
const cache = yield this.cache;
// Loop through the listed resources, caching any which are available.
yield this.config.urls.reduce((previous, url) => __awaiter(this, void 0, void 0, function* () {
// Wait on all previous operations to complete.
yield previous;
// Construct the Request for this url.
const req = this.adapter.newRequest(url);
// First, check the cache to see if there is already a copy of this resource.
const alreadyCached = (yield cache.match(req)) !== undefined;
// If the resource is in the cache already, it can be skipped.
if (alreadyCached) {
return;
}
const updated = yield this.maybeUpdate(updateFrom, req, cache);
if (this.config.updateMode === 'prefetch' && !updated) {
// If the resource was not updated, either it was not cached before or
// the previously cached version didn't match the updated hash. In that
// case, prefetch update mode dictates that the resource will be updated,
// except if it was not previously utilized. Check the status of the
// cached resource to see.
const cacheStatus = yield updateFrom.recentCacheStatus(url);
// If the resource is not cached, or was cached but unused, then it will be
// loaded lazily.
if (cacheStatus !== UpdateCacheStatus.CACHED) {
return;
}
// Update from the network.
yield this.fetchAndCacheOnce(req, false);
}
}), Promise.resolve());
});
}
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
var __awaiter$1 = (undefined && undefined.__awaiter) || function (thisArg, _arguments, P, generator) {
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
/**
* Manages an instance of `LruState` and moves URLs to the head of the
* chain when requested.
*/
class LruList {
constructor(state) {
if (state === undefined) {
state = {
head: null,
tail: null,
map: {},
count: 0,
};
}
this.state = state;
}
/**
* The current count of URLs in the list.
*/
get size() { return this.state.count; }
/**
* Remove the tail.
*/
pop() {
// If there is no tail, return null.
if (this.state.tail === null) {
return null;
}
const url = this.state.tail;
this.remove(url);
// This URL has been successfully evicted.
return url;
}
remove(url) {
const node = this.state.map[url];
if (node === undefined) {
return false;
}
// Special case if removing the current head.
if (this.state.head === url) {
// The node is the current head. Special case the removal.
if (node.next === null) {
// This is the only node. Reset the cache to be empty.
this.state.head = null;
this.state.tail = null;
this.state.map = {};
this.state.count = 0;
return true;
}
// There is at least one other node. Make the next node the new head.
const next = this.state.map[node.next];
next.previous = null;
this.state.head = next.url;
node.next = null;
delete this.state.map[url];
this.state.count--;
return true;
}
// The node is not the head, so it has a previous. It may or may not be the tail.
// If it is not, then it has a next. First, grab the previous node.
const previous = this.state.map[node.previous];
// Fix the forward pointer to skip over node and go directly to node.next.
previous.next = node.next;
// node.next may or may not be set. If it is, fix the back pointer to skip over node.
// If it's not set, then this node happened to be the tail, and the tail needs to be
// updated to point to the previous node (removing the tail).
if (node.next !== null) {
// There is a next node, fix its back pointer to skip this node.
this.state.map[node.next].previous = node.previous;
}
else {
// There is no next node - the accessed node must be the tail. Move the tail pointer.
this.state.tail = node.previous;
}
node.next = null;
node.previous = null;
delete this.state.map[url];
// Count the removal.
this.state.count--;
return true;
}
accessed(url) {
// When a URL is accessed, its node needs to be moved to the head of the chain.
// This is accomplished in two steps:
//
// 1) remove the node from its position within the chain.
// 2) insert the node as the new head.
//
// Sometimes, a URL is accessed which has not been seen before. In this case, step 1 can
// be skipped completely (which will grow the chain by one). Of course, if the node is
// already the head, this whole operation can be skipped.
if (this.state.head === url) {
// The URL is already in the head position, accessing it is a no-op.
return;
}
// Look up the node in the map, and construct a new entry if it's
const node = this.state.map[url] || { url, next: null, previous: null };
// Step 1: remove the node from its position within the chain, if it is in the chain.
if (this.state.map[url] !== undefined) {
this.remove(url);
}
// Step 2: insert the node at the head of the chain.
// First, check if there's an existing head node. If there is, it has previous: null.
// Its previous pointer should be set to the node we're inserting.
if (this.state.head !== null) {
this.state.map[this.state.head].previous = url;
}
// The next pointer of the node being inserted gets set to the old head, before the head
// pointer is updated to this node.
node.next = this.state.head;
// The new head is the new node.
this.state.head = url;
// If there is no tail, then this is the first node, and is both the head and the tail.
if (this.state.tail === null) {
this.state.tail = url;
}
// Set the node in the map of nodes (if the URL has been seen before, this is a no-op)
// and count the insertion.
this.state.map[url] = node;
this.state.count++;
}
}
/**
* A group of cached resources determined by a set of URL patterns which follow a LRU policy
* for caching.
*/
class DataGroup {
constructor(scope, adapter, config, db, prefix) {
this.scope = scope;
this.adapter = adapter;
this.config = config;
this.db = db;
this.prefix = prefix;
/**
* Tracks the LRU state of resources in this cache.
*/
this._lru = null;
this.patterns = this.config.patterns.map(pattern => new RegExp(pattern));
this.cache = this.scope.caches.open(`${this.prefix}:dynamic:${this.config.name}:cache`);
this.lruTable = this.db.open(`${this.prefix}:dynamic:${this.config.name}:lru`);
this.ageTable = this.db.open(`${this.prefix}:dynamic:${this.config.name}:age`);
}
/**
* Lazily initialize/load the LRU chain.
*/
lru() {
return __awaiter$1(this, void 0, void 0, function* () {
if (this._lru === null) {
const table = yield this.lruTable;
try {
this._lru = new LruList(yield table.read('lru'));
}
catch (e) {
this._lru = new LruList();
}
}
return this._lru;
});
}
/**
* Sync the LRU chain to non-volatile storage.
*/
syncLru() {
return __awaiter$1(this, void 0, void 0, function* () {
if (this._lru === null) {
return;
}
const table = yield this.lruTable;
return table.write('lru', this._lru.state);
});
}
/**
* Process a fetch event and return a `Response` if the resource is covered by this group,
* or `null` otherwise.
*/
handleFetch(req, ctx) {
return __awaiter$1(this, void 0, void 0, function* () {
// Do nothing
if (!this.patterns.some(pattern => pattern.test(req.url))) {
return null;
}
// Lazily initialize the LRU cache.
const lru = yield this.lru();
// The URL matches this cache. First, check whether this is a mutating request or not.
switch (req.method) {
case 'OPTIONS':
// Don't try to cache this - it's non-mutating, but is part of a mutating request.
// Most likely SWs don't even see this, but this guard is here just in case.
return null;
case 'GET':
case 'HEAD':
// Handle the request with whatever strategy was selected.
switch (this.config.strategy) {
case 'freshness':
return this.handleFetchWithFreshness(req, ctx, lru);
case 'performance':
return this.handleFetchWithPerformance(req, ctx, lru);
default:
throw new Error(`Unknown strategy: ${this.config.strategy}`);
}
default:
// This was a mutating request. Assume the cache for this URL is no longer valid.
const wasCached = lru.remove(req.url);
// If there was a cached entry, remove it.
if (wasCached) {
yield this.clearCacheForUrl(req.url);
}
// Sync the LRU chain to non-volatile storage.
yield this.syncLru();
// Finally, fall back on the network.
return this.safeFetch(req);
}
});
}
handleFetchWithPerformance(req, ctx, lru) {
return __awaiter$1(this, void 0, void 0, function* () {
let res = null;
// Check the cache first. If the resource exists there (and is not expired), the cached
// version can be used.
const fromCache = yield this.loadFromCache(req, lru);
if (fromCache !== null) {
res = fromCache.res;
// Check the age of the resource.
if (this.config.refreshAheadMs !== undefined && fromCache.age >= this.config.refreshAheadMs) {
ctx.waitUntil(this.safeCacheResponse(req, this.safeFetch(req)));
}
}
if (res !== null) {
return res;
}
// No match from the cache. Go to the network. Note that this is not an 'await'
// call, networkFetch is the actual Promise. This is due to timeout handling.
const [timeoutFetch, networkFetch] = this.networkFetchWithTimeout(req);
res = yield timeoutFetch;
// Since fetch() will always return a response, undefined indicates a timeout.
if (res === undefined) {
// The request timed out. Return a Gateway Timeout error.
res = this.adapter.newResponse(null, { status: 504, statusText: 'Gateway Timeout' });
// Cache the network response eventually.
ctx.waitUntil(this.safeCacheResponse(req, networkFetch));
}
// The request completed in time, so cache it inline with the response flow.
yield this.cacheResponse(req, res, lru);
return res;
});
}
handleFetchWithFreshness(req, ctx, lru) {
return __awaiter$1(this, void 0, void 0, function* () {
// Start with a network fetch.
const [timeoutFetch, networkFetch] = this.networkFetchWithTimeout(req);
let res;
// If that fetch errors, treat it as a timed out request.
try {
res = yield timeoutFetch;
}
catch (e) {
res = undefined;
}
// If the network fetch times out or errors, fall back on the cache.
if (res === undefined) {
ctx.waitUntil(this.safeCacheResponse(req, networkFetch));
// Ignore the age, the network response will be cached anyway due to the
// behavior of freshness.
const fromCache = yield this.loadFromCache(req, lru);
res = (fromCache !== null) ? fromCache.res : null;
}
else {
yield this.cacheResponse(req, res, lru, true);
}
// Either the network fetch didn't time out, or the cache yielded a usable response.
// In either case, use it.
if (res !== null) {
return res;
}
// No response in the cache. No choice but to fall back on the full network fetch.
res = yield networkFetch;
yield this.cacheResponse(req, res, lru, true);
return res;
});
}
networkFetchWithTimeout(req) {
// If there is a timeout configured, race a timeout Promise with the network fetch.
// Otherwise, just fetch from the network directly.
if (this.config.timeoutMs !== undefined) {
const networkFetch = this.scope.fetch(req);
const safeNetworkFetch = (() => __awaiter$1(this, void 0, void 0, function* () {
try {
return yield networkFetch;
}
catch (err) {
return this.adapter.newResponse(null, {
status: 504,
statusText: 'Gateway Timeout',
});
}
}))();
const networkFetchUndefinedError = (() => __awaiter$1(this, void 0, void 0, function* () {
try {
return yield networkFetch;
}
catch (err) {
return undefined;
}
}))();
// Construct a Promise<undefined> for the timeout.
const timeout = this.adapter.timeout(this.config.timeoutMs);
// Race that with the network fetch. This will either be a Response, or `undefined`
// in the event that the request errored or timed out.
return [Promise.race([networkFetchUndefinedError, timeout]), safeNetworkFetch];
}
else {
const networkFetch = this.safeFetch(req);
// Do a plain fetch.
return [networkFetch, networkFetch];
}
}
safeCacheResponse(req, res) {
return __awaiter$1(this, void 0, void 0, function* () {
try {
yield this.cacheResponse(req, yield res, yield this.lru());
}
catch (e) {
// TODO: handle this error somehow?
}
});
}
loadFromCache(req, lru) {
return __awaiter$1(this, void 0, void 0, function* () {
// Look for a response in the cache. If one exists, return it.
const cache = yield this.cache;
let res = yield cache.match(req);
if (res !== undefined) {
// A response was found in the cache, but its age is not yet known. Look it up.
try {
const ageTable = yield this.ageTable;
const age = this.adapter.time - (yield ageTable.read(req.url)).age;
// If the response is young enough, use it.
if (age <= this.config.maxAge) {
// Successful match from the cache. Use the response, after marking it as having
// been accessed.
lru.accessed(req.url);
return { res, age };
}
// Otherwise, or if there was an error, assume the response is expired, and evict it.
}
catch (e) {
// Some error getting the age for the response. Assume it's expired.
}
lru.remove(req.url);
yield this.clearCacheForUrl(req.url);
// TODO: avoid duplicate in event of network timeout, maybe.
yield this.syncLru();
}
return null;
});
}
/**
* Operation for caching the response from the server. This has to happen all
* at once, so that the cache and LRU tracking remain in sync. If the network request
* completes before the timeout, this logic will be run inline with the response flow.
* If the request times out on the server, an error will be returned but the real network
* request will still be running in the background, to be cached when it completes.
*/
cacheResponse(req, res, lru, okToCacheOpaque = false) {
return __awaiter$1(this, void 0, void 0, function* () {
// Only cache successful responses.
if (!res.ok || (okToCacheOpaque && res.type === 'opaque')) {
return;
}
// If caching this response would make the cache exceed its maximum size, evict something
// first.
if (lru.size >= this.config.maxSize) {
// The cache is too big, evict something.
const evictedUrl = lru.pop();
if (evictedUrl !== null) {
yield this.clearCacheForUrl(evictedUrl);
}
}
// TODO: evaluate for possible race conditions during flaky network periods.
// Mark this resource as having been accessed recently. This ensures it won't be evicted
// until enough other resources are requested that it falls off the end of the LRU chain.
lru.accessed(req.url);
// Store the response in the cache (cloning because the browser will consume
// the body during the caching operation).
yield (yield this.cache).put(req, res.clone());
// Store the age of the cache.
const ageTable = yield this.ageTable;
yield ageTable.write(req.url, { age: this.adapter.time });
// Sync the LRU chain to non-volatile storage.
yield this.syncLru();
});
}
/**
* Delete all of the saved state which this group uses to track resources.
*/
cleanup() {
return __awaiter$1(this, void 0, void 0, function* () {
// Remove both the cache and the database entries which track LRU stats.
yield Promise.all([
this.scope.caches.delete(`${this.prefix}:dynamic:${this.config.name}:cache`),
this.db.delete(`${this.prefix}:dynamic:${this.config.name}:age`),
this.db.delete(`${this.prefix}:dynamic:${this.config.name}:lru`),
]);
});
}
/**
* Clear the state of the cache for a particular resource.
*
* This doesn't remove the resource from the LRU table, that is assumed to have
* been done already. This clears the GET and HEAD versions of the request from
* the cache itself, as well as the metadata stored in the age table.
*/
clearCacheForUrl(url) {
return __awaiter$1(this, void 0, void 0, function* () {
const [cache, ageTable] = yield Promise.all([this.cache, this.ageTable]);
yield Promise.all([
cache.delete(this.adapter.newRequest(url, { method: 'GET' })),
cache.delete(this.adapter.newRequest(url, { method: 'HEAD' })),
ageTable.delete(url),
]);
});
}
safeFetch(req) {
return __awaiter$1(this, void 0, void 0, function* () {
try {
return this.scope.fetch(req);
}
catch (err) {
return this.adapter.newResponse(null, {
status: 504,
statusText: 'Gateway Timeout',
});
}
});
}
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
var __awaiter$2 = (undefined && undefined.__awaiter) || function (thisArg, _arguments, P, generator) {
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
/**
* A specific version of the application, identified by a unique manifest
* as determined by its hash.
*
* Each `AppVersion` can be thought of as a published version of the app
* that can be installed as an update to any previously installed versions.
*/
class AppVersion {
constructor(scope, adapter, database, idle, manifest, manifestHash) {
this.scope = scope;
this.adapter = adapter;
this.database = database;
this.idle = idle;
this.manifest = manifest;
this.manifestHash = manifestHash;
/**
* A Map of absolute URL paths (/foo.txt) to the known hash of their
* contents (if available).
*/
this.hashTable = new Map();
/**
* Tracks whether the manifest has encountered any inconsistencies.
*/
this._okay = true;
// The hashTable within the manifest is an Object - convert it to a Map for easier lookups.
Object.keys(this.manifest.hashTable).forEach(url => {
this.hashTable.set(url, this.manifest.hashTable[url]);
});
// Process each `AssetGroup` declared in the manifest. Each declared group gets an `AssetGroup`
// instance
// created for it, of a type that depends on the configuration mode.
this.assetGroups = (manifest.assetGroups || []).map(config => {
// Every asset group has a cache that's prefixed by the manifest hash and the name of the
// group.
const prefix = `ngsw:${this.manifestHash}:assets`;
// Check the caching mode, which determines when resources will be fetched/updated.
switch (config.installMode) {
case 'prefetch':
return new PrefetchAssetGroup(this.scope, this.adapter, this.idle, config, this.hashTable, this.database, prefix);
case 'lazy':
return new LazyAssetGroup(this.scope, this.adapter, this.idle, config, this.hashTable, this.database, prefix);
}
});
// Process each `DataGroup` declared in the manifest.
this.dataGroups = (manifest.dataGroups || [])
.map(config => new DataGroup(this.scope, this.adapter, config, this.database, `ngsw:${config.version}:data`));
// Create `include`/`exclude` RegExps for the `navigationUrls` declared in the manifest.
const includeUrls = manifest.navigationUrls.filter(spec => spec.positive);
const excludeUrls = manifest.navigationUrls.filter(spec => !spec.positive);
this.navigationUrls = {
include: includeUrls.map(spec => new RegExp(spec.regex)),
exclude: excludeUrls.map(spec => new RegExp(spec.regex)),
};
}
get okay() { return this._okay; }
/**
* Fully initialize this version of the application. If this Promise resolves successfully, all
* required
* data has been safely downloaded.
*/
initializeFully(updateFrom) {
return __awaiter$2(this, void 0, void 0, function* () {
try {
// Fully initialize each asset group, in series. Starts with an empty Promise,
// and waits for the previous groups to have been initialized before initializing
// the next one in turn.
yield this.assetGroups.reduce((previous, group) => __awaiter$2(this, void 0, void 0, function* () {
// Wait for the previous groups to complete initialization. If there is a
// failure, this will throw, and each subsequent group will throw, until the
// whole sequence fails.
yield previous;
// Initialize this group.
return group.initializeFully(updateFrom);
}), Promise.resolve());
}
catch (err) {
this._okay = false;
throw err;
}
});
}
handleFetch(req, context) {
return __awaiter$2(this, void 0, void 0, function* () {
// Check the request against each `AssetGroup` in sequence. If an `AssetGroup` can't handle the
// request,
// it will return `null`. Thus, the first non-null response is the SW's answer to the request.
// So reduce
// the group list, keeping track of a possible response. If there is one, it gets passed
// through, and if
// not the next group is consulted to produce a candidate response.
const asset = yield this.assetGroups.reduce((potentialResponse, group) => __awaiter$2(this, void 0, void 0, function* () {
// Wait on the previous potential response. If it's not null, it should just be passed
// through.
const resp = yield potentialResponse;
if (resp !== null) {
return resp;
}
// No response has been found yet. Maybe this group will have one.
return group.handleFetch(req, context);
}), Promise.resolve(null));
// The result of the above is the asset response, if there is any, or null otherwise. Return the
// asset
// response if there was one. If not, check with the data caching groups.
if (asset !== null) {
return asset;
}
// Perform the same reduction operation as above, but this time processing
// the data caching groups.
const data = yield this.dataGroups.reduce((potentialResponse, group) => __awaiter$2(this, void 0, void 0, function* () {
const resp = yield potentialResponse;
if (resp !== null) {
return resp;
}
return group.handleFetch(req, context);
}), Promise.resolve(null));
// If the data caching group returned a response, go with it.
if (data !== null) {
return data;
}
// Next, check if this is a navigation request for a route. Detect circular
// navigations by checking if the request URL is the same as the index URL.
if (req.url !== this.manifest.index && this.isNavigationRequest(req)) {
// This was a navigation request. Re-enter `handleFetch` with a request for
// the URL.
return this.handleFetch(this.adapter.newRequest(this.manifest.index), context);
}
return null;
});
}
/**
* Determine whether the request is a navigation request.
* Takes into account: Request mode, `Accept` header, `navigationUrls` patterns.
*/
isNavigationRequest(req) {
if (req.mode !== 'navigate') {
return false;
}
if (!this.acceptsTextHtml(req)) {
return false;
}
const urlPrefix = this.scope.registration.scope.replace(/\/$/, '');
const url = req.url.startsWith(urlPrefix) ? req.url.substr(urlPrefix.length) : req.url;
const urlWithoutQueryOrHash = url.replace(/[?#].*$/, '');
return this.navigationUrls.include.some(regex => regex.test(urlWithoutQueryOrHash)) &&
!this.navigationUrls.exclude.some(regex => regex.test(urlWithoutQueryOrHash));
}
/**
* Check this version for a given resource with a particular hash.
*/
lookupResourceWithHash(url, hash) {
return __awaiter$2(this, void 0, void 0, function* () {
// Verify that this version has the requested resource cached. If not,
// there's no point in trying.
if (!this.hashTable.has(url)) {
return null;
}
// Next, check whether the resource has the correct hash. If not, any cached
// response isn't usable.
if (this.hashTable.get(url) !== hash) {
return null;
}
const cacheState = yield this.lookupResourceWithoutHash(url);
return cacheState && cacheState.response;
});
}
/**
* Check this version for a given resource regardless of its hash.
*/
lookupResourceWithoutHash(url) {
// Limit the search to asset groups, and only scan the cache, don't
// load resources from the network.
return this.assetGroups.reduce((potentialResponse, group) => __awaiter$2(this, void 0, void 0, function* () {
const resp = yield potentialResponse;
if (resp !== null) {
return resp;
}
// fetchFromCacheOnly() avoids any network fetches, and returns the
// full set of cache data, not just the Response.
return group.fetchFromCacheOnly(url);
}), Promise.resolve(null));
}
/**
* List all unhashed resources from all asset groups.
*/
previouslyCachedResources() {
return this.assetGroups.reduce((resources, group) => __awaiter$2(this, void 0, void 0, function* () {
return (yield resources).concat(yield group.unhashedResources());
}), Promise.resolve([]));
}
recentCacheStatus(url) {
return __awaiter$2(this, void 0, void 0, function* () {
return this.assetGroups.reduce((current, group) => __awaiter$2(this, void 0, void 0, function* () {
const status = yield current;
if (status === UpdateCacheStatus.CACHED) {
return status;
}
const groupStatus = yield group.cacheStatus(url);
if (groupStatus === UpdateCacheStatus.NOT_CACHED) {
return status;
}
return groupStatus;
}), Promise.resolve(UpdateCacheStatus.NOT_CACHED));
});
}
/**
* Erase this application version, by cleaning up all the caches.
*/
cleanup() {
return __awaiter$2(this, void 0, void 0, function* () {
yield Promise.all(this.assetGroups.map(group => group.cleanup()));
yield Promise.all(this.dataGroups.map(group => group.cleanup()));
});
}
/**
* Get the opaque application data which was provided with the manifest.
*/
get appData() { return this.manifest.appData || null; }
/**
* Check whether a request accepts `text/html` (based on the `Accept` header).
*/
acceptsTextHtml(req) {
const accept = req.headers.get('Accept');
if (accept === null) {
return false;
}
const values = accept.split(',');
return values.some(value => value.trim().toLowerCase() === 'text/html');
}
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
var __awaiter$3 = (undefined && undefined.__awaiter) || function (thisArg, _arguments, P, generator) {
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
const DEBUG_LOG_BUFFER_SIZE = 100;
class DebugHandler {
constructor(driver, adapter) {
this.driver = driver;
this.adapter = adapter;
// There are two debug log message arrays. debugLogA records new debugging messages.
// Once it reaches DEBUG_LOG_BUFFER_SIZE, the array is moved to debugLogB and a new
// array is assigned to debugLogA. This ensures that insertion to the debug log is
// always O(1) no matter the number of logged messages, and that the total number
// of messages in the log never exceeds 2 * DEBUG_LOG_BUFFER_SIZE.
this.debugLogA = [];
this.debugLogB = [];
}
handleFetch(req) {
return __awaiter$3(this, void 0, void 0, function* () {
const [state, versions, idle] = yield Promise.all([
this.driver.debugState(),
this.driver.debugVersions(),
this.driver.debugIdleState(),
]);
const msgState = `NGSW Debug Info:
Driver state: ${state.state} (${state.why})
Latest manifest hash: ${state.latestHash || 'none'}
Last update check: ${this.since(state.lastUpdateCheck)}`;
const msgVersions = versions
.map(version => `=== Version ${version.hash} ===
Clients: ${version.clients.join(', ')}`)
.join('\n\n');
const msgIdle = `=== Idle Task Queue ===
Last update tick: ${this.since(idle.lastTrigger)}
Last update run: ${this.since(idle.lastRun)}
Task queue:
${idle.queue.map(v => ' * ' + v).join('\n')}
Debug log:
${this.formatDebugLog(this.debugLogB)}
${this.formatDebugLog(this.debugLogA)}
`;
return this.adapter.newResponse(`${msgState}
${msgVersions}
${msgIdle}`, { headers: this.adapter.newHeaders({ 'Content-Type': 'text/plain' }) });
});
}
since(time) {
if (time === null) {
return 'never';
}
let age = this.adapter.time - time;
const days = Math.floor(age / 86400000);
age = age % 86400000;
const hours = Math.floor(age / 3600000);
age = age % 3600000;
const minutes = Math.floor(age / 60000);
age = age % 60000;
const seconds = Math.floor(age / 1000);
const millis = age % 1000;
return '' + (days > 0 ? `${days}d` : '') + (hours > 0 ? `${hours}h` : '') +
(minutes > 0 ? `${minutes}m` : '') + (seconds > 0 ? `${seconds}s` : '') +
(millis > 0 ? `${millis}u` : '');
}
log(value, context = '') {
// Rotate the buffers if debugLogA has grown too large.
if (this.debugLogA.length === DEBUG_LOG_BUFFER_SIZE) {
this.debugLogB = this.debugLogA;
this.debugLogA = [];
}
// Convert errors to string for logging.
if (typeof value !== 'string') {
value = this.errorToString(value);
}
// Log the message.
this.debugLogA.push({ value, time: this.adapter.time, context });
}
errorToString(err) { return `${err.name}(${err.message}, ${err.stack})`; }
formatDebugLog(log) {
return log.map(entry => `[${this.since(entry.time)}] ${entry.value} ${entry.context}`)
.join('\n');
}
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
var __awaiter$4 = (undefined && undefined.__awaiter) || function (thisArg, _arguments, P, generator) {
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
class IdleScheduler {
constructor(adapter, threshold, debug) {
this.adapter = adapter;
this.threshold = threshold;
this.debug = debug;
this.queue = [];
this.scheduled = null;
this.empty = Promise.resolve();
this.emptyResolve = null;
this.lastTrigger = null;
this.lastRun = null;
}
trigger() {
return __awaiter$4(this, void 0, void 0, function* () {
this.lastTrigger = this.adapter.time;
if (this.queue.length === 0) {
return;
}
if (this.scheduled !== null) {
this.scheduled.cancel = true;
}
const scheduled = {
cancel: false,
};
this.scheduled = scheduled;
yield this.adapter.timeout(this.threshold);
if (scheduled.cancel) {
return;
}
this.scheduled = null;
yield this.execute();
});
}
execute() {
return __awaiter$4(this, void 0, void 0, function* () {
this.lastRun = this.adapter.time;
while (this.queue.length > 0) {
const queue = this.queue;
this.queue = [];
yield queue.reduce((previous, task) => __awaiter$4(this, void 0, void 0, function* () {
yield previous;
try {
yield task.run();
}
catch (err) {
this.debug.log(err, `while running idle task ${task.desc}`);
}
}), Promise.resolve());
}
if (this.emptyResolve !== null) {
this.emptyResolve();
this.emptyResolve = null;
}
this.empty = Promise.resolve();
});
}
schedule(desc, run) {
this.queue.push({ desc, run });
if (this.emptyResolve === null) {
this.empty = new Promise(resolve => { this.emptyResolve = resolve; });
}
}
get size() { return this.queue.length; }
get taskDescriptions() { return this.queue.map(task => task.desc); }
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
function hashManifest(manifest) {
return sha1(JSON.stringify(manifest));
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
function isMsgCheckForUpdates(msg) {
return msg.action === 'CHECK_FOR_UPDATES';
}
function isMsgActivateUpdate(msg) {
return msg.action === 'ACTIVATE_UPDATE';
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
var __awaiter$5 = (undefined && undefined.__awaiter) || function (thisArg, _arguments, P, generator) {
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
const IDLE_THRESHOLD = 5000;
const SUPPORTED_CONFIG_VERSION = 1;
const NOTIFICATION_OPTION_NAMES = [
'actions', 'badge', 'body', 'dir', 'icon', 'lang', 'renotify', 'requireInteraction', 'tag',
'vibrate', 'data'
];
var DriverReadyState;
(function (DriverReadyState) {
// The SW is operating in a normal mode, responding to all traffic.
DriverReadyState[DriverReadyState["NORMAL"] = 0] = "NORMAL";
// The SW does not have a clean installation of the latest version of the app, but older
// cached versions are safe to use so long as they don't try to fetch new dependencies.
// This is a degraded state.
DriverReadyState[DriverReadyState["EXISTING_CLIENTS_ONLY"] = 1] = "EXISTING_CLIENTS_ONLY";
// The SW has decided that caching is completely unreliable, and is forgoing request
// handling until the next restart.
DriverReadyState[DriverReadyState["SAFE_MODE"] = 2] = "SAFE_MODE";
})(DriverReadyState || (DriverReadyState = {}));
class Driver {
constructor(scope, adapter, db) {
// Set up all the event handlers that the SW needs.
this.scope = scope;
this.adapter = adapter;
this.db = db;
/**
* Tracks the current readiness condition under which the SW is operating. This controls
* whether the SW attempts to respond to some or all requests.
*/
this.state = DriverReadyState.NORMAL;
this.stateMessage = '(nominal)';
/**
* Tracks whether the SW is in an initialized state or not. Before initialization,
* it's not legal to respond to requests.
*/
this.initialized = null;
/**
* Maps client IDs to the manifest hash of the application version being used to serve
* them. If a client ID is not present here, it has not yet been assigned a version.
*
* If a ManifestHash appears here, it is also present in the `versions` map below.
*/
this.clientVersionMap = new Map();
/**
* Maps manifest hashes to instances of `AppVersion` for those manifests.
*/
this.versions = new Map();
/**
* The latest version fetched from the server.
*
* Valid after initialization has completed.
*/
this.latestHash = null;
this.lastUpdateCheck = null;
/**
* Whether there is a check for updates currently scheduled due to navigation.
*/
this.scheduledNavUpdateCheck = false;
/**
* Keep track of whether we have logged an invalid `only-if-cached` request.
* (See `.onFetch()` for details.)
*/
this.loggedInvalidOnlyIfCachedRequest = false;
// The install event is triggered when the service worker is first installed.
this.scope.addEventListener('install', (event) => {
// SW code updates are separate from application updates, so code updates are
// almost as straightforward as restarting the SW. Because of this, it's always
// safe to skip waiting until application tabs are closed, and activate the new
// SW version immediately.
event.waitUntil(this.scope.skipWaiting());
});
// The activate event is triggered when this version of the service worker is
// first activated.
this.scope.addEventListener('activate', (event) => {
// As above, it's safe to take over from existing clients immediately, since
// the new SW version will continue to serve the old application.
event.waitUntil(this.scope.clients.claim());
// Rather than wait for the first fetch event, which may not arrive until
// the next time the application is loaded, the SW takes advantage of the
// activation event to schedule initialization. However, if this were run
// in the context of the 'activate' event, waitUntil() here would cause fetch
// events to block until initialization completed. Thus, the SW does a
// postMessage() to itself, to schedule a new event loop iteration with an
// entirely separate event context. The SW will be kept alive by waitUntil()
// within that separate context while initialization proceeds, while at the
// same time the activation event is allowed to resolve and traffic starts
// being served.
if (this.scope.registration.active !== null) {
this.scope.registration.active.postMessage({ action: 'INITIALIZE' });
}
});
// Handle the fetch, message, and push events.
this.scope.addEventListener('fetch', (event) => this.onFetch(event));
this.scope.addEventListener('message', (event) => this.onMessage(event));
this.scope.addEventListener('push', (event) => this.onPush(event));
// The debugger generates debug pages in response to debugging requests.
this.debugger = new DebugHandler(this, this.adapter);
// The IdleScheduler will execute idle tasks after a given delay.
this.idle = new IdleScheduler(this.adapter, IDLE_THRESHOLD, this.debugger);
}
/**
* The handler for fetch events.
*
* This is the transition point between the synchronous event handler and the
* asynchronous execution that eventually resolves for respondWith() and waitUntil().
*/
onFetch(event) {
const req = event.request;
// The only thing that is served unconditionally is the debug page.
if (this.adapter.parseUrl(req.url, this.scope.registration.scope).path === '/ngsw/state') {
// Allow the debugger to handle the request, but don't affect SW state in any
// other way.
event.respondWith(this.debugger.handleFetch(req));
return;
}
// If the SW is in a broken state where it's not safe to handle requests at all,
// returning causes the request to fall back on the network. This is preferred over
// `respondWith(fetch(req))` because the latter still shows in DevTools that the
// request was handled by the SW.
// TODO: try to handle DriverReadyState.EXISTING_CLIENTS_ONLY here.
if (this.state === DriverReadyState.SAFE_MODE) {
// Even though the worker is in safe mode, idle tasks still need to happen so
// things like update checks, etc. can take place.
event.waitUntil(this.idle.trigger());
return;
}
// When opening DevTools in Chrome, a request is made for the current URL (and possibly related
// resources, e.g. scripts) with `cache: 'only-if-cached'` and `mode: 'no-cors'`. These request
// will eventually fail, because `only-if-cached` is only allowed to be used with
// `mode: 'same-origin'`.
// This is likely a bug in Chrome DevTools. Avoid handling such requests.
// (See also https://github.com/angular/angular/issues/22362.)
// TODO(gkalpak): Remove once no longer necessary (i.e. fixed in Chrome DevTools).
if (req.cache === 'only-if-cached' && req.mode !== 'same-origin') {
// Log the incident only the first time it happens, to avoid spamming the logs.
if (!this.loggedInvalidOnlyIfCachedRequest) {
this.loggedInvalidOnlyIfCachedRequest = true;
this.debugger.log(`Ignoring invalid request: 'only-if-cached' can be set only with 'same-origin' mode`, `Driver.fetch(${req.url}, cache: ${req.cache}, mode: ${req.mode})`);
}
return;
}
// Past this point, the SW commits to handling the request itself. This could still
// fail (and result in `state` being set to `SAFE_MODE`), but even in that case the
// SW will still deliver a response.
event.respondWith(this.handleFetch(event));
}
/**
* The handler for message events.
*/
onMessage(event) {
// Ignore message events when the SW is in safe mode, for now.
if (this.state === DriverReadyState.SAFE_MODE) {
return;
}
// If the message doesn't have the expected signature, ignore it.
const data = event.data;
if (!data || !data.action) {
return;
}
// Initialization is the only event which is sent directly from the SW to itself,
// and thus `event.source` is not a Client. Handle it here, before the check
// for Client sources.
if (data.action === 'INITIALIZE') {
// Only initialize if not already initialized (or initializing).
if (this.initialized === null) {
// Initialize the SW.
this.initialized = this.initialize();
// Wait until initialization is properly scheduled, then trigger idle
// events to allow it to complete (assuming the SW is idle).
event.waitUntil((() => __awaiter$5(this, void 0, void 0, function* () {
yield this.initialized;
yield this.idle.trigger();
}))());
}
return;
}
// Only messages from true clients are accepted past this point (this is essentially
// a typecast).
if (!this.adapter.isClient(event.source)) {
return;
}
// Handle the message and keep the SW alive until it's handled.
event.waitUntil(this.handleMessage(data, event.source));
}
onPush(msg) {
// Push notifications without data have no effect.
if (!msg.data) {
return;
}
// Handle the push and keep the SW alive until it's handled.
msg.waitUntil(this.handlePush(msg.data.json()));
}
handleMessage(msg, from) {
return __awaiter$5(this, void 0, void 0, function* () {
if (isMsgCheckForUpdates(msg)) {
const action = (() => __awaiter$5(this, void 0, void 0, function* () { yield this.checkForUpdate(); }))();
yield this.reportStatus(from, action, msg.statusNonce);
}
else if (isMsgActivateUpdate(msg)) {
yield this.reportStatus(from, this.updateClient(from), msg.statusNonce);
}
});
}
handlePush(data) {
return __awaiter$5(this, void 0, void 0, function* () {
yield this.broadcast({
type: 'PUSH',
data,
});
if (!data.notification || !data.notification.title) {
return;
}
const desc = data.notification;
let options = {};
NOTIFICATION_OPTION_NAMES.filter(name => desc.hasOwnProperty(name))
.forEach(name => options[name] = desc[name]);
yield this.scope.registration.showNotification(desc['title'], options);
});
}
reportStatus(client, promise, nonce) {
return __awaiter$5(this, void 0, void 0, function* () {
const response = { type: 'STATUS', nonce, status: true };
try {
yield promise;
client.postMessage(response);
}
catch (e) {
client.postMessage(Object.assign({}, response, { status: false, error: e.toString() }));
}
});
}
updateClient(client) {
return __awaiter$5(this, void 0, void 0, function* () {
// Figure out which version the client is on. If it's not on the latest,
// it needs to be moved.
const existing = this.clientVersionMap.get(client.id);
if (existing === this.latestHash) {
// Nothing to do, this client is already on the latest version.
return;
}
// Switch the client over.
let previous = undefined;
// Look up the application data associated with the existing version. If there
// isn't any, fall back on using the hash.
if (existing !== undefined) {
const existingVersion = this.versions.get(existing);
previous = this.mergeHashWithAppData(existingVersion.manifest, existing);
}
// Set the current version used by the client, and sync the mapping to disk.
this.clientVersionMap.set(client.id, this.latestHash);
yield this.sync();
// Notify the client about this activation.
const current = this.versions.get(this.latestHash);
const notice = {
type: 'UPDATE_ACTIVATED',
previous,
current: this.mergeHashWithAppData(current.manifest, this.latestHash),
};
client.postMessage(notice);
});
}
handleFetch(event) {
return __awaiter$5(this, void 0, void 0, function* () {
// Since the SW may have just been started, it may or may not have been initialized already.
// this.initialized will be `null` if initialization has not yet been attempted, or will be a
// Promise which will resolve (successfully or unsuccessfully) if it has.
if (this.initialized === null) {
// Initialization has not yet been attempted, so attempt it. This should only ever happen once
// per SW instantiation.
this.initialized = this.initialize();
}
// If initialization fails, the SW needs to enter a safe state, where it declines to respond to
// network requests.
try {
// Wait for initialization.
yield this.initialized;
}
catch (e) {
// Initialization failed. Enter a safe state.
this.state = DriverReadyState.SAFE_MODE;
this.stateMessage = `Initialization failed due to error: ${errorToString(e)}`;
// Even though the driver entered safe mode, background tasks still need to happen.
event.waitUntil(this.idle.trigger());
// Since the SW is already committed to responding to the currently active request,
// respond with a network fetch.
return this.safeFetch(event.request);
}
// On navigation requests, check for new updates.
if (event.request.mode === 'navigate' && !this.scheduledNavUpdateCheck) {
this.scheduledNavUpdateCheck = true;
this.idle.schedule('check-updates-on-navigation', () => __awaiter$5(this, void 0, void 0, function* () {
this.scheduledNavUpdateCheck = false;
yield this.checkForUpdate();
}));
}
// Decide which version of the app to use to serve this request. This is asynchronous as in
// some cases, a record will need to be written to disk about the assignment that is made.
const appVersion = yield this.assignVersion(event);
// Bail out
if (appVersion === null) {
event.waitUntil(this.idle.trigger());
return this.safeFetch(event.request);
}
let res = null;
try {
// Handle the request. First try the AppVersion. If that doesn't work, fall back on the
// network.
res = yield appVersion.handleFetch(event.request, event);
}
catch (err) {
if (err.isCritical) {
// Something went wrong with the activation of this version.
yield this.versionFailed(appVersion, err, this.latestHash === appVersion.manifestHash);
event.waitUntil(this.idle.trigger());
return this.safeFetch(event.request);
}
throw err;
}
// The AppVersion will only return null if the manifest doesn't specify what to do about this
// request. In that case, just fall back on the network.
if (res === null) {
event.waitUntil(this.idle.trigger());
return this.safeFetch(event.request);
}
// Trigger the idle scheduling system. The Promise returned by trigger() will resolve after
// a specific amount of time has passed. If trigger() hasn't been called again by then (e.g.
// on a subsequent request), the idle task queue will be drained and the Promise won't resolve
// until that operation is complete as well.
event.waitUntil(this.idle.trigger());
// The AppVersion returned a usable response, so return it.
return res;
});
}
/**
* Attempt to quickly reach a state where it's safe to serve responses.
*/
initialize() {
return __awaiter$5(this, void 0, void 0, function* () {
// On initialization, all of the serialized state is read out of the 'control'
// table. This includes:
// - map of hashes to manifests of currently loaded application versions
// - map of client IDs to their pinned versions
// - record of the most recently fetched manifest hash
//
// If these values don't exist in the DB, then this is the either the first time
// the SW has run or the DB state has been wiped or is inconsistent. In that case,
// load a fresh copy of the manifest and reset the state from scratch.
// Open up the DB table.
const table = yield this.db.open('control');
// Attempt to load the needed state from the DB. If this fails, the catch {} block
// will populate these variables with freshly constructed values.
let manifests, assignments, latest;
try {
// Read them from the DB simultaneously.
[manifests, assignments, latest] = yield Promise.all([
table.read('manifests'),
table.read('assignments'),
table.read('latest'),
]);
// Successfully loaded from saved state. This implies a manifest exists, so
// the update check needs to happen in the background.
this.idle.schedule('init post-load (update, cleanup)', () => __awaiter$5(this, void 0, void 0, function* () {
yield this.checkForUpdate();
try {
yield this.cleanupCaches();
}
catch (err) {
// Nothing to do - cleanup failed. Just log it.
this.debugger.log(err, 'cleanupCaches @ init post-load');
}
}));
}
catch (_) {
// Something went wrong. Try to start over by fetching a new manifest from the
// server and building up an empty initial state.
const manifest = yield this.fetchLatestManifest();
const hash = hashManifest(manifest);
manifests = {};
manifests[hash] = manifest;
assignments = {};
latest = { latest: hash };
// Save the initial state to the DB.
yield Promise.all([
table.write('manifests', manifests),
table.write('assignments', assignments),
table.write('latest', latest),
]);
}
// At this point, either the state has been loaded successfully, or fresh state
// with a new copy of the manifest has been produced. At this point, the `Driver`
// can have its internals hydrated from the state.
// Initialize the `versions` map by setting each hash to a new `AppVersion` instance
// for that manifest.
Object.keys(manifests).forEach((hash) => {
const manifest = manifests[hash];
// If the manifest is newly initialized, an AppVersion may have already been
// created for it.
if (!this.versions.has(hash)) {
this.versions.set(hash, new AppVersion(this.scope, this.adapter, this.db, this.idle, manifest, hash));
}
});
// Map each client ID to its associated hash. Along the way, verify that the hash
// is still valid for that client ID. It should not be possible for a client to
// still be associated with a hash that was since removed from the state.
Object.keys(assignments).forEach((clientId) => {
const hash = assignments[clientId];
if (this.versions.has(hash)) {
this.clientVersionMap.set(clientId, hash);
}
else {
this.clientVersionMap.set(clientId, latest.latest);
this.debugger.log(`Unknown version ${hash} mapped for client ${clientId}, using latest instead`, `initialize: map assignments`);
}
});
// Set the latest version.
this.latestHash = latest.latest;
// Finally, assert that the latest version is in fact loaded.
if (!this.versions.has(latest.latest)) {
throw new Error(`Invariant violated (initialize): latest hash ${latest.latest} has no known manifest`);
}
// Finally, wait for the scheduling of initialization of all versions in the
// manifest. Ordinarily this just schedules the initializations to happen during
// the next idle period, but in development mode this might actually wait for the
// full initialization.
// If any of these initializations fail, versionFailed() will be called either
// synchronously or asynchronously to handle the failure and re-map clients.
yield Promise.all(Object.keys(manifests).map((hash) => __awaiter$5(this, void 0, void 0, function* () {
try {
// Attempt to schedule or initialize this version. If this operation is
// successful, then initialization either succeeded or was scheduled. If
// it fails, then full initialization was attempted and failed.
yield this.scheduleInitialization(this.versions.get(hash), this.latestHash === hash);
}
catch (err) {
this.debugger.log(err, `initialize: schedule init of ${hash}`);
return false;
}
})));
});
}
lookupVersionByHash(hash, debugName = 'lookupVersionByHash') {
// The version should exist, but check just in case.
if (!this.versions.has(hash)) {
throw new Error(`Invariant violated (${debugName}): want AppVersion for ${hash} but not loaded`);
}
return this.versions.get(hash);
}
/**
* Decide which version of the manifest to use for the event.
*/
assignVersion(event) {
return __awaiter$5(this, void 0, void 0, function* () {
// First, check whether the event has a (non empty) client ID. If it does, the version may
// already be associated.
const clientId = event.clientId;
if (clientId) {
// Check if there is an assigned client id.
if (this.clientVersionMap.has(clientId)) {
// There is an assignment for this client already.
const hash = this.clientVersionMap.get(clientId);
let appVersion = this.lookupVersionByHash(hash, 'assignVersion');
// Ordinarily, this client would be served from its assigned version. But, if this
// request is a navigation request, this client can be updated to the latest
// version immediately.
if (this.state === DriverReadyState.NORMAL && hash !== this.latestHash &&
appVersion.isNavigationRequest(event.request)) {
// Update this client to the latest version immediately.
if (this.latestHash === null) {
throw new Error(`Invariant violated (assignVersion): latestHash was null`);
}
const client = yield this.scope.clients.get(clientId);
yield this.updateClient(client);
appVersion = this.lookupVersionByHash(this.latestHash, 'assignVersion');
}
// TODO: make sure the version is valid.
return appVersion;
}
else {
// This is the first time this client ID has been seen. Whether the SW is in a
// state to handle new clients depends on the current readiness state, so check
// that first.
if (this.state !== DriverReadyState.NORMAL) {
// It's not safe to serve new clients in the current state. It's possible that
// this is an existing client which has not been mapped yet (see below) but
// even if that is the case, it's invalid to make an assignment to a known
// invalid version, even if that assignment was previously implicit. Return
// undefined here to let the caller know that no assignment is possible at
// this time.
return null;
}
// It's safe to handle this request. Two cases apply. Either:
// 1) the browser assigned a client ID at the time of the navigation request, and
// this is truly the first time seeing this client, or
// 2) a navigation request came previously from the same client, but with no client
// ID attached. Browsers do this to avoid creating a client under the origin in
// the event the navigation request is just redirected.
//
// In case 1, the latest version can safely be used.
// In case 2, the latest version can be used, with the assumption that the previous
// navigation request was answered under the same version. This assumption relies
// on the fact that it's unlikely an update will come in between the navigation
// request and requests for subsequent resources on that page.
// First validate the current state.
if (this.latestHash === null) {
throw new Error(`Invariant violated (assignVersion): latestHash was null`);
}
// Pin this client ID to the current latest version, indefinitely.
this.clientVersionMap.set(clientId, this.latestHash);
yield this.sync();
// Return the latest `AppVersion`.
return this.lookupVersionByHash(this.latestHash, 'assignVersion');
}
}
else {
// No client ID was associated with the request. This must be a navigation request
// for a new client. First check that the SW is accepting new clients.
if (this.state !== DriverReadyState.NORMAL) {
return null;
}
// Serve it with the latest version, and assume that the client will actually get
// associated with that version on the next request.
// First validate the current state.
if (this.latestHash === null) {
throw new Error(`Invariant violated (assignVersion): latestHash was null`);
}
// Return the latest `AppVersion`.
return this.lookupVersionByHash(this.latestHash, 'assignVersion');
}
});
}
fetchLatestManifest(ignoreOfflineError = false) {
return __awaiter$5(this, void 0, void 0, function* () {
const res = yield this.safeFetch(this.adapter.newRequest('ngsw.json?ngsw-cache-bust=' + Math.random()));
if (!res.ok) {
if (res.status === 404) {
yield this.deleteAllCaches();
yield this.scope.registration.unregister();
}
else if (res.status === 504 && ignoreOfflineError) {
return null;
}
throw new Error(`Manifest fetch failed! (status: ${res.status})`);
}
this.lastUpdateCheck = this.adapter.time;
return res.json();
});
}
deleteAllCaches() {
return __awaiter$5(this, void 0, void 0, function* () {
yield (yield this.scope.caches.keys())
.filter(key => key.startsWith('ngsw:'))
.reduce((previous, key) => __awaiter$5(this, void 0, void 0, function* () {
yield Promise.all([
previous,
this.scope.caches.delete(key),
]);
}), Promise.resolve());
});
}
/**
* Schedule the SW's attempt to reach a fully prefetched state for the given AppVersion
* when the SW is not busy and has connectivity. This returns a Promise which must be
* awaited, as under some conditions the AppVersion might be initialized immediately.
*/
scheduleInitialization(appVersion, latest) {
return __awaiter$5(this, void 0, void 0, function* () {
const initialize = () => __awaiter$5(this, void 0, void 0, function* () {
try {
yield appVersion.initializeFully();
}
catch (err) {
this.debugger.log(err, `initializeFully for ${appVersion.manifestHash}`);
yield this.versionFailed(appVersion, err, latest);
}
});
// TODO: better logic for detecting localhost.
if (this.scope.registration.scope.indexOf('://localhost') > -1) {
return initialize();
}
this.idle.schedule(`initialization(${appVersion.manifestHash})`, initialize);
});
}
versionFailed(appVersion, err, latest) {
return __awaiter$5(this, void 0, void 0, function* () {
// This particular AppVersion is broken. First, find the manifest hash.
const broken = Array.from(this.versions.entries()).find(([hash, version]) => version === appVersion);
if (broken === undefined) {
// This version is no longer in use anyway, so nobody cares.
return;
}
const brokenHash = broken[0];
// TODO: notify affected apps.
// The action taken depends on whether the broken manifest is the active (latest) or not.
// If so, the SW cannot accept new clients, but can continue to service old ones.
if (this.latestHash === brokenHash || latest) {
// The latest manifest is broken. This means that new clients are at the mercy of the
// network, but caches continue to be valid for previous versions. This is
// unfortunate but unavoidable.
this.state = DriverReadyState.EXISTING_CLIENTS_ONLY;
this.stateMessage = `Degraded due to failed initialization: ${errorToString(err)}`;
// Cancel the binding for these clients.
Array.from(this.clientVersionMap.keys())
.forEach(clientId => this.clientVersionMap.delete(clientId));
}
else {
// The current version is viable, but this older version isn't. The only
// possible remedy is to stop serving the older version and go to the network.
// Figure out which clients are affected and put them on the latest.
const affectedClients = Array.from(this.clientVersionMap.keys())
.filter(clientId => this.clientVersionMap.get(clientId) === brokenHash);
// Push the affected clients onto the latest version.
affectedClients.forEach(clientId => this.clientVersionMap.set(clientId, this.latestHash));
}
yield this.sync();
});
}
setupUpdate(manifest, hash) {
return __awaiter$5(this, void 0, void 0, function* () {
const newVersion = new AppVersion(this.scope, this.adapter, this.db, this.idle, manifest, hash);
// Firstly, check if the manifest version is correct.
if (manifest.configVersion !== SUPPORTED_CONFIG_VERSION) {
yield this.deleteAllCaches();
yield this.scope.registration.unregister();
throw new Error(`Invalid config version: expected ${SUPPORTED_CONFIG_VERSION}, got ${manifest.configVersion}.`);
}
// Cause the new version to become fully initialized. If this fails, then the
// version will not be available for use.
yield newVersion.initializeFully(this);
// Install this as an active version of the app.
this.versions.set(hash, newVersion);
// Future new clients will use this hash as the latest version.
this.latestHash = hash;
yield this.sync();
yield this.notifyClientsAboutUpdate();
});
}
checkForUpdate() {
return __awaiter$5(this, void 0, void 0, function* () {
let hash = '(unknown)';
try {
const manifest = yield this.fetchLatestManifest(true);
if (manifest === null) {
// Client or server offline. Unable to check for updates at this time.
// Continue to service clients (existing and new).
this.debugger.log('Check for update aborted. (Client or server offline.)');
return false;
}
hash = hashManifest(manifest);
// Check whether this is really an update.
if (this.versions.has(hash)) {
return false;
}
yield this.setupUpdate(manifest, hash);
return true;
}
catch (err) {
this.debugger.log(err, `Error occurred while updating to manifest ${hash}`);
this.state = DriverReadyState.EXISTING_CLIENTS_ONLY;
this.stateMessage = `Degraded due to failed initialization: ${errorToString(err)}`;
return false;
}
});
}
/**
* Synchronize the existing state to the underlying database.
*/
sync() {
return __awaiter$5(this, void 0, void 0, function* () {
// Open up the DB table.
const table = yield this.db.open('control');
// Construct a serializable map of hashes to manifests.
const manifests = {};
this.versions.forEach((version, hash) => { manifests[hash] = version.manifest; });
// Construct a serializable map of client ids to version hashes.
const assignments = {};
this.clientVersionMap.forEach((hash, clientId) => { assignments[clientId] = hash; });
// Record the latest entry. Since this is a sync which is necessarily happening after
// initialization, latestHash should always be valid.
const latest = {
latest: this.latestHash,
};
// Synchronize all of these.
yield Promise.all([
table.write('manifests', manifests),
table.write('assignments', assignments),
table.write('latest', latest),
]);
});
}
cleanupCaches() {
return __awaiter$5(this, void 0, void 0, function* () {
// Query for all currently active clients, and list the client ids. This may skip
// some clients in the browser back-forward cache, but not much can be done about
// that.
const activeClients = (yield this.scope.clients.matchAll()).map(client => client.id);
// A simple list of client ids that the SW has kept track of. Subtracting
// activeClients from this list will result in the set of client ids which are
// being tracked but are no longer used in the browser, and thus can be cleaned up.
const knownClients = Array.from(this.clientVersionMap.keys());
// Remove clients in the clientVersionMap that are no longer active.
knownClients.filter(id => activeClients.indexOf(id) === -1)
.forEach(id => this.clientVersionMap.delete(id));
// Next, determine the set of versions which are still used. All others can be
// removed.
const usedVersions = new Set();
this.clientVersionMap.forEach((version, _) => usedVersions.add(version));
// Collect all obsolete versions by filtering out used versions from the set of all versions.
const obsoleteVersions = Array.from(this.versions.keys())
.filter(version => !usedVersions.has(version) && version !== this.latestHash);
// Remove all the versions which are no longer used.
yield obsoleteVersions.reduce((previous, version) => __awaiter$5(this, void 0, void 0, function* () {
// Wait for the other cleanup operations to complete.
yield previous;
// Try to get past the failure of one particular version to clean up (this
// shouldn't happen, but handle it just in case).
try {
// Get ahold of the AppVersion for this particular hash.
const instance = this.versions.get(version);
// Delete it from the canonical map.
this.versions.delete(version);
// Clean it up.
yield instance.cleanup();
}
catch (err) {
// Oh well? Not much that can be done here. These caches will be removed when
// the SW revs its format version, which happens from time to time.
this.debugger.log(err, `cleanupCaches - cleanup ${version}`);
}
}), Promise.resolve());
// Commit all the changes to the saved state.
yield this.sync();
});
}
/**
* Determine if a specific version of the given resource is cached anywhere within the SW,
* and fetch it if so.
*/
lookupResourceWithHash(url, hash) {
return Array
// Scan through the set of all cached versions, valid or otherwise. It's safe to do such
// lookups even for invalid versions as the cached version of a resource will have the
// same hash regardless.
.from(this.versions.values())
// Reduce the set of versions to a single potential result. At any point along the
// reduction, if a response has already been identified, then pass it through, as no
// future operation could change the response. If no response has been found yet, keep
// checking versions until one is or until all versions have been exhausted.
.reduce((prev, version) => __awaiter$5(this, void 0, void 0, function* () {
// First, check the previous result. If a non-null result has been found already, just
// return it.
if ((yield prev) !== null) {
return prev;
}
// No result has been found yet. Try the next `AppVersion`.
return version.lookupResourceWithHash(url, hash);
}), Promise.resolve(null));
}
lookupResourceWithoutHash(url) {
return __awaiter$5(this, void 0, void 0, function* () {
yield this.initialized;
const version = this.versions.get(this.latestHash);
return version.lookupResourceWithoutHash(url);
});
}
previouslyCachedResources() {
return __awaiter$5(this, void 0, void 0, function* () {
yield this.initialized;
const version = this.versions.get(this.latestHash);
return version.previouslyCachedResources();
});
}
recentCacheStatus(url) {
const version = this.versions.get(this.latestHash);
return version.recentCacheStatus(url);
}
mergeHashWithAppData(manifest, hash) {
return {
hash,
appData: manifest.appData,
};
}
notifyClientsAboutUpdate() {
return __awaiter$5(this, void 0, void 0, function* () {
yield this.initialized;
const clients = yield this.scope.clients.matchAll();
const next = this.versions.get(this.latestHash);
yield clients.reduce((previous, client) => __awaiter$5(this, void 0, void 0, function* () {
yield previous;
// Firstly, determine which version this client is on.
const version = this.clientVersionMap.get(client.id);
if (version === undefined) {
// Unmapped client - assume it's the latest.
return;
}
if (version === this.latestHash) {
// Client is already on the latest version, no need for a notification.
return;
}
const current = this.versions.get(version);
// Send a notice.
const notice = {
type: 'UPDATE_AVAILABLE',
current: this.mergeHashWithAppData(current.manifest, version),
available: this.mergeHashWithAppData(next.manifest, this.latestHash),
};
client.postMessage(notice);
}), Promise.resolve());
});
}
broadcast(msg) {
return __awaiter$5(this, void 0, void 0, function* () {
const clients = yield this.scope.clients.matchAll();
clients.forEach(client => { client.postMessage(msg); });
});
}
debugState() {
return __awaiter$5(this, void 0, void 0, function* () {
return {
state: DriverReadyState[this.state],
why: this.stateMessage,
latestHash: this.latestHash,
lastUpdateCheck: this.lastUpdateCheck,
};
});
}
debugVersions() {
return __awaiter$5(this, void 0, void 0, function* () {
// Build list of versions.
return Array.from(this.versions.keys()).map(hash => {
const version = this.versions.get(hash);
const clients = Array.from(this.clientVersionMap.entries())
.filter(([clientId, version]) => version === hash)
.map(([clientId, version]) => clientId);
return {
hash,
manifest: version.manifest, clients,
status: '',
};
});
});
}
debugIdleState() {
return __awaiter$5(this, void 0, void 0, function* () {
return {
queue: this.idle.taskDescriptions,
lastTrigger: this.idle.lastTrigger,
lastRun: this.idle.lastRun,
};
});
}
safeFetch(req) {
return __awaiter$5(this, void 0, void 0, function* () {
try {
return yield this.scope.fetch(req);
}
catch (err) {
this.debugger.log(err, `Driver.fetch(${req.url})`);
return this.adapter.newResponse(null, {
status: 504,
statusText: 'Gateway Timeout',
});
}
});
}
}
function errorToString(error) {
if (error instanceof Error) {
return `${error.message}\n${error.stack}`;
}
else {
return `${error}`;
}
}
/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
const scope = self;
const adapter = new Adapter();
const driver = new Driver(scope, adapter, new CacheDatabase(scope, adapter));
}());